python numpy-tile函数
本文所有代码均可在Pycharm编译运行
Python版本:3.6.2
俗话说,新手看博客,高手看文档,那我们先按高手的套路走一波文档:help(numpy.tile)
Help on function tile in module numpy.lib.shape_base:
tile(A, reps)
Construct an array by repeating A the number of times given by reps.
If `reps` has length ``d``, the result will have dimension of
``max(d, A.ndim)``.
If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
or shape (1, 1, 3) for 3-D replication. If this is not the desired
behavior, promote `A` to d-dimensions manually before calling this
function.
If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
(1, 1, 2, 2).
Note : Although tile may be used for broadcasting, it is strongly
recommended to use numpy's broadcasting operations and functions.
Parameters
----------
A : array_like
The input array.
reps : array_like
The number of repetitions of `A` along each axis.
Returns
-------
c : ndarray
The tiled output array.
See Also
--------
repeat : Repeat elements of an array.
broadcast_to : Broadcast an array to a new shape
Examples
--------
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])
>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
简单来说,tile函数的作用是让某个数组(其实不局限于数组,但我们这里只讨论数组),以某种方式重复,构造出新的数组,所以返回值也是个数组。
例1
a = array([0, 1, 2])
b = tile(a, 2)
print(b)
//结果为
[0, 1, 2, 0, 1, 2]
这个例子肯定很简单了,我用来说明tile的两个参数,第一个参数是数组,第二个参数可以是一个数字,更多情况可能是一个元组(这种情况可能更容易让人懵逼)。下面讨论当是元组时tile函数是如何执行的。
tile怎么执行的,有两个要点
(1)比较数组维度d和元组维度reps,如果d<reps,�在需要时对数组补中括号 [] 来增加维度。
(2)元组数字从右到左,数组维度从最深维度到最低维度。�假设元组为(a,b,c,d,e,f),则数组最深维度重复f次;然后次深维度重复e次;接着次次深维度重复d次;再然后次次次深维度重复c次…… 以此类推,直到对最低维度重复a次,结束,得到结果
例1说明:数组维度d=1,元组维度reps=1,所以对数组的维度进行重复时,不需要补中括号。元组元素从右到左看,第一个元素是2,数组最深维度是1。所以得到
[0, 1, 2, 0, 1, 2]
可以预见,如果只重复1次,会得到原数组本身
[0, 1, 2]
例2
a = array([0, 1, 2])
b = tile(a, (2, 1))
print(b)
//结果为
[[0, 1, 2],
[0, 1, 2]]
例2说明:数组只有1个维度,比较数组维度d和元组维度reps,d<reps,所以需要补中括号。元组从右到左看,而数组维度从最深的开始看。对数组a的最深维度重复1次,得到[[0, 1, 2]],然后再对数组a次深维度重复2次,得到[[0, 1, 2], [0, 1, 2]]
现在你应该可以按着上面的思路,得出以下3个函数结果,判断完后再试着在编译器中输出看是否与你预想的一致。
a = array([0, 1, 2])
①tile(a, (2, 2))
②tile(a, (2, 1, 1))
③tile(a, (2, 2, 1))
答案:
①
Numbers作图
②
Numbers作图
③
Numbers作图能理解吗?欢迎留下您的见解和建议!