专利阅读笔记,US20110274021A1,在BT扫描期间用B

2018-06-17  本文已影响30人  公子小水

原文Detecting A Wlan Signal Using A Bluetooth Receiver During Bluetooth Scan Activity

背景知识

Two types of devices may engage in WLAN communication, an Access Point (AP) and a station (STA). In one common operational scenario, the STA is not attempting to transmit to a WLAN AP, but the STA is out of radio range of the WLAN AP and is in a low power mode referred to as Out-of-Service (OoS). A WLAN AP periodically transmits beacon packets. If an OoS STA were to come into radio range of a WLAN AP, then beacon packets from the WLAN AP would periodically be receivable at the OoS STA. In such a situation, the STA should detect the beacons and begin communicating with the WLAN AP to join the WLAN network. To accomplish this, an OoS STA periodically scans to detect beacons by waking its receiver scan the WLAN channels. There are thirteen such channels. Although the WLAN receiver is inactive for about ninety percent of the time, the WLAN receiver of the STA is active for about ten percent of the time even though the OoS STA is only scanning and is not actually in use. This amounts to a large amount of power consumption. In mobile devices it may be desirable to reduce this power consumption of an OoS STA.

Some types of mobile devices include a BT transceiver in addition to the WLAN transceiver. If a BT transceiver and a WLAN transceiver exist in the same device, the BT and WLAN transceivers are said to coexist. To avoid wasting power, proposals have been made to use the BT receiver to search for WLAN signals. Rather than using the more power hungry WLAN receiver for this purpose, the BT receiver is used. If energy in the 2.4 GHz unlicensed band is detected using the BT receiver, then the WLAN radio is activated to perform subsequent normal WLAN communications. Published U.S. Patent Application US20081081155, for example, describes using a BT receiver to detect WLAN energy. The BT receiver is tuned to several frequencies that are spaced over the WLAN channel frequency band. An energy sample is taken at each frequency and the samples are analyzed to detect WLAN energy. In another example, the BT receiver is tuned to the center frequency of the WLAN channel frequency band. After accumulating the received energy for a length of time, the energy of the sample is compared to a threshold and if the threshold is exceeded then the WLAN radio is activated. Alternative and better ways of using BT receivers to detect WLAN energy are sought.

          pBT·m≦pWL·n+x≦pST·m+wBT−wWLBK  Eq (4)

[0072] In equation (4), m and n are integers; pBT is the BT scan interval; pWL is the WLAN beacon interval; wBT is duration of the Bluetooth page scan window; wWLBK is the duration of a WLAN beacon; and x is the timing offset. The timing offset x is a value between 0 and pWL. If pBT=1280 milliseconds and if pWL=100 milliseconds, and if wWLBK=1.25 milliseconds, and if wBT−wWLBK<20 milliseconds, then a timing offset x may exist such that no combination of integers m and n satisfy equation (4). This means that no WLAN beacon will fall into a BT scan window. The resulting detection probability for such a time offset value of x is always zero no matter how good the WLAN energy detector circuit may be.

上一篇下一篇

猜你喜欢

热点阅读