矩阵基础5-矩阵的几何意义
2022-05-25 本文已影响0人
只是甲
一. 映射、像和值域
1.1 映射
初中学过的方程 y = 2x + 1,这个方程的关系就是映射。
体现在代数上是直观的数值,例如x=2的时候,y=5
体现在集合上就是坐标系,x轴为2,y轴为5的点,一系列的点就是一条线。
![](https://img.haomeiwen.com/i2638478/3e5ca8cbd1237ccf.png)
1.2 像
不太好描述,但是对比方程 理解就好。
![](https://img.haomeiwen.com/i2638478/47965dd43162a1fa.png)
1.3 值域与定义域
方程 y = 2x + 1
x所有取值集合为定义域
y所有取值集合为值域
![](https://img.haomeiwen.com/i2638478/1713a82ae1905947.png)
1.4 单射和满射
![](https://img.haomeiwen.com/i2638478/43f85764c46a7a82.png)
1.5 逆映射
![](https://img.haomeiwen.com/i2638478/4672257af078657c.png)
1.6 线性映射
![](https://img.haomeiwen.com/i2638478/2dd8f4c5d394ef63.png)
例子:
![](https://img.haomeiwen.com/i2638478/19c5ac7a602dba3c.png)
二. 线性空间
![](https://img.haomeiwen.com/i2638478/bf6898efb5ec9d02.png)
2.1 从向量说起
![](https://img.haomeiwen.com/i2638478/3b7aacddececa74b.png)
![](https://img.haomeiwen.com/i2638478/648de29e15a8a6e3.png)
![](https://img.haomeiwen.com/i2638478/f49caac04b971921.png)
2.2 线性空间概述
![](https://img.haomeiwen.com/i2638478/d26de92a341b12ab.png)
![](https://img.haomeiwen.com/i2638478/0ddd6d1844fc18b0.png)
线性空间的基本性质
![](https://img.haomeiwen.com/i2638478/36295cc832d2b787.png)
2.3 线性空间的基、坐标和维数
![](https://img.haomeiwen.com/i2638478/a809a546d21ce3f3.png)
2.3.1 几点说明
![](https://img.haomeiwen.com/i2638478/b4f6c035fbac6789.png)
![](https://img.haomeiwen.com/i2638478/1b8b39205ad0e1a1.png)
![](https://img.haomeiwen.com/i2638478/3a1c52777143cea8.png)
2.3.2 坐标唯一
![](https://img.haomeiwen.com/i2638478/286efa627949d535.png)
2.3.3 基的扩张定律
![](https://img.haomeiwen.com/i2638478/468cae0fb15830d1.png)
例子:
![](https://img.haomeiwen.com/i2638478/3d2eac045826402d.png)
2.3.4 基变换和坐标变换
![](https://img.haomeiwen.com/i2638478/427c5489158cc9d4.png)
![](https://img.haomeiwen.com/i2638478/f292e57b738afd42.png)
2.3.5 向量的坐标变换
![](https://img.haomeiwen.com/i2638478/d78f7cfc050b970e.png)
例子:
![](https://img.haomeiwen.com/i2638478/c6f334c8999eebd1.png)
![](https://img.haomeiwen.com/i2638478/10f83a9e3b18dd9d.png)
![](https://img.haomeiwen.com/i2638478/28793854e8b24444.png)