iOS面试总结iOS

iOS开发之Block原理探究

2019-04-18  本文已影响91人  it_Xiong

Block概述

在iOS中,block的使用非常方便,我们一般用来进行值的传递,与其他的传递方式(例如delegate,通知,KVO)不同,Block的调用可以使代码更加紧凑,阅读性更好.

Block本质

那么Block到底是什么呢?为了弄清楚Block的本质,我们来看看底层源码:

  1. 终端创建一个block.c文件:
vim block.c

里面写上C代码,一个普通的block调用场景:

#include "stdio.h"

int main(){
    
    int multiplier = 6;
    int (^block)(int) = ^int(int num){
        return num * multiplier;
    };
    block(8);
    return 0;
}


通过以下终端命令编译为c++文件,就得到了一个block.cpp的c++文件

clang -rewrite-objc block.c -o block.cpp

一路翻到最底下,我把比较重要的部分截取出来

struct __block_impl {
  void *isa;     //isa指针,Block是对象的标志
  int Flags;
  int Reserved;
  void *FuncPtr; //函数指针
};

struct __main_block_impl_0 {
  struct __block_impl impl;         //block结构体
  struct __main_block_desc_0* Desc; //block相关描述结构体
  int multiplier;                   //block使用变量
    /*
     __main_block_impl_0     c++中结构体构造函数的声明
     fp                      函数指针
     desc                    block描述
     _multiplier             block使用变量
     flags                   标记
     multiplier(_multiplier) _multiplier赋值给上面的int multiplier
     */
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _multiplier, int flags=0) : multiplier(_multiplier) {
      
    impl.isa = &_NSConcreteStackBlock; //isa赋值
    impl.Flags = flags;                //标记位赋值
    impl.FuncPtr = fp;                 //指针赋值
    Desc = desc;                       //block描述赋值
  }
};

static int __main_block_func_0(struct __main_block_impl_0 *__cself, int num) {
  int multiplier = __cself->multiplier; // bound by copy 只是值传递

        return num * multiplier;
    }

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(){

    int multiplier = 6;
    /*
     int (^block)(int) = ^int(int num){
     return num * multiplier;
     };
     */
    /*
     __main_block_impl_0  结构体
     __main_block_func_0  (void*)函数指针
     &__main_block_desc_0_DATA block相关描述的结构体
     multiplier block中所使用户的变量
     */
    int (*block)(int) = ((int (*)(int))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, multiplier));
    
    /*
      block(8);
     */
    ((int (*)(__block_impl *, int))((__block_impl *)block)->FuncPtr)((__block_impl *)block, 8);
    
    return 0;
}

通过以上源码可以验证:

Block就是一个将函数及其执行上下文封装起来的对象.

Block调用

block的调用方式和普通的Objective-C方法调用基本一致,这里我们来看下block调用到底是什么?我们还是来看源码:

/*
((__block_impl *)block)->FuncPtr): 强制类型转换为__block_impl类型,取出当中的成员变量 FuncPtr
((__block_impl *)block, 8):  函数的参数,block是block本身,8是我们block传进来的参数
*/
    ((int (*)(__block_impl *, int))((__block_impl *)block)->FuncPtr)((__block_impl *)block, 8);

图1 图2 图3 图4

从上面四张图片可以知道,Block的执行过程就是通过__main_block__impl_0函数中传入block函数指针,然后赋值给了 __main_block_impl_0结构体中的 block结构体 impl的属性FuncPtr.

Block调用本质是就是函数的调用.

Block分类

Block分为三种,全局Block,堆Block,栈Block.

1.全局Block

    void (^block)(NSString *name) = ^(NSString *name) {
        NSLog(@"%@",name);
    };
     NSLog(@"%@",block);

控制台打印结果:

<__NSGlobalBlock__: 0x1005c1100>

也就是说是一个全局Block
2.堆Block

    int a = 10; 
    void (^block1)(void) = ^{
        NSLog(@"%d",a);
    };
    
    NSLog(@"%@",block1);

控制台打印结果:

<NSMallocBlock: 0x60000028ba50>

也就是说是一个堆Block
3.栈Block

     int a = 10; 
      NSLog(@"%@",^{
        NSLog(@"%d",a); 
    });

控制台打印结果:

<NSStackBlock: 0x7ffee5a78298>

也就是说是一个栈Block

Block循环引用

循环引用的产生原因我就不多说了,下面直接说我们常用的解决方法:

  1. __weak
 __weak typeof(self) weakSelf = self;
    self.oneBlock = ^(NSString *name){
       //出了作用域自动释放
        weakSelf.name = name;
    };
 self.oneBlock(@"jack");
  1. __block
__block TwoViewController *blockSelf = self;
    self.oneBlock = ^(NSString *name){

        blockSelf.name = name;
        blockSelf = nil;     //防止blockSelf变成野指针
    };
 self.oneBlock(@"jack");

3.把self当做参数传入block

   self.twoBlock = ^(TwoViewController *vc) {
        
        vc.name = @"jack";
    };
    self.twoBlock(self);

Block原理探究

  1. 终端创建一个block.c文件:
vim block.c

里面写上C代码,一个最简单的无参无返回值block:

#include "stdio.h"

int main(){
    
    void (^block)(void) = ^{
        printf("hello block");
    };
    block();
    return 0;
}

编译为c++文件,就得到了一个block.cpp的c++文件

clang -rewrite-objc block.c -o block.cpp

一路翻到最底下,我把比较重要的部分截取出来


//block结构体
struct __block_impl {
    void *isa;
    int Flags;
    int Reserved;
    void *FuncPtr;
};

//block函数结构体
struct __main_block_impl_0 {
   //block结构体
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;

  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
      
    impl.isa = &_NSConcreteStackBlock; //栈block  创建出来未使用就是在栈区
      
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {

        printf("hello block");
    }


static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};


int main(){

void (*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));

    /*block函数,把前面的类型去掉
    void (*block)(void) = __main_block_impl_0(__main_block_func_0, __main_block_desc_0_DATA));
*/
    
    //调用block函数
    ((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
    
    return 0;
}
impl.isa = &_NSConcreteStackBlock; //栈block 

由此,可以印证上面栈block 创建出来未使用就是在栈区.

2.现在我们block.c中代码改为如下所示

#include "stdio.h"

int main(){
    
    int a = 1;
    void (^block)(void) = ^{
        printf("%d",a);
    };
    block();
    return 0;
}

继续编译为c++文件:


//多了个 int 参数
struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  int a;
    
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, int flags=0) : a(_a) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int a = __cself->a; // bound by copy
    
    //把传进来的a copy一份, 赋值给了临时变量a,只是值传递
        printf("%d",a);
    }

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(){

    int a = 1;
    
    void (*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, a));
    
    ((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
    
    return 0;
}

在block里面打印a的值,只是把a当成一个参数传入block内部,而block内部把传入的a赋值给了一个同名的临时变量a,只是一个值传递
3.我们把block.c中的代码再次改动一下,

#include "stdio.h"

int main(){
    
    int a = 1;
    void (^block)(void) = ^{
        a = 2;
    };
    block();
    return 0;
}

再次编译为c++文件,这时终端直接报错

/var/folders/rx/4mhmzqfd0m7brd5j4hwv__xc0000gn/T/block1-18d4f2.i:441:11: error: 
      variable is not assignable (missing __block type specifier)
        a = 2;
        ~ ^
1 error generated.

终端报错:变量不可赋值(缺少__block类型说明符)
那么我们这次加上 __block,

#include "stdio.h"

int main(){
    
    __block int a = 1;
    void (^block)(void) = ^{
        a = 2;
    };
    block();
    return 0;
}

这次编译之后,c++文件:


struct __Block_byref_a_0 {
  void *__isa;
__Block_byref_a_0 *__forwarding;
 int __flags;
 int __size;
 int a;
};


struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
    
  __Block_byref_a_0 *a; // by ref //截获了外部变量a
    
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
      
    impl.isa = &_NSConcreteStackBlock; //堆block
      
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_a_0 *a = __cself->a; // bound by ref

    //这里直接拿到了外部变量a的地址,通过地址把a的值改为了2
        (a->__forwarding->a) = 2;
    }

static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main(){

    __attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 0, sizeof(__Block_byref_a_0), 1};
    
    void (*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344));
    
    ((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
    return 0;
}
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_a_0 *a = __cself->a; // bound by ref //地址拷贝

        (a->__forwarding->a) = 2;
    }

通过上面的代码可以知道,这里直接拿到了外部变量a的地址,通过地址把a的值改为了2,只是地址传递,所以 __block截获变量,是把变量地址截获,也就是把变量本身传入block内部对其改变,变量本身也会改变.

Block截获变量

这次我们用MACOS写上一段.m代码


#import <Foundation/Foundation.h>

//全局变量
int global_a = 10;
//静态全局变量
static int staic_global_a = 20;

int main(int argc, const char * argv[]) {
    @autoreleasepool {
     
        //基本数据类型的局部变量
        int a = 5;
        
        //对象类型的局部变量
        __unsafe_unretained id unsafe_objc = nil;
        __strong id strong_objc = nil;
        
        //局部静态变量
        static int staic_a = 6;
        
        void(^block)(void) = ^{
            
            NSLog(@"局部变量.基本数据类型 %d",a);
            
            NSLog(@"局部变量.__unsafe_unretained.对象类型 %@",unsafe_objc);
            NSLog(@"局部变量.__strong.对象类型 %@",strong_objc);
            
            NSLog(@"局部静态变量 %d",staic_a);
            
            NSLog(@"全局变量 %d",global_a);
            NSLog(@"静态全局变量 %d",staic_global_a);
            
        };
        
        block();
        
    }
    return 0;
}

然后在终端用命令 clang -rewrite-objc -fobjc-arc main.m编译为c++代码,这次我们只看block的函数部分:

//对全局变量,静态全局变量不截获
int global_a = 10;

static int staic_global_a = 20;


struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
    //截获局部变量的值
  int a;
    //连同所有权s修饰符一起截获
  __unsafe_unretained id unsafe_objc;
  __strong id strong_objc;
    //以指针形式截获静态局部变量
  int *staic_a;
    
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, __unsafe_unretained id _unsafe_objc, __strong id _strong_objc, int *_staic_a, int flags=0) : a(_a), unsafe_objc(_unsafe_objc), strong_objc(_strong_objc), staic_a(_staic_a) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

通过以上的代码,我们可以得出结论:

对于基本数据类型的局部变量截获其值
对于对象类型的局部变量连同所有权修饰符一起截获
以指针形式截获局部静态变量
不截获全局变量.静态全局变量

一般情况下,对被截获变量进行赋值操作 需要添加__block修饰符,但是它对不同类型的变量却又有不同:
需要用到__block修饰符的: 局部变量(基本数据类型,对象)
不需要用到__block修饰符的: 局部静态变量 (直接操作指针), 全局变量,静态全局变量,而后面两个不涉及截获,直接操作本身

上一篇下一篇

猜你喜欢

热点阅读