LRU缓存
2021-07-06 本文已影响0人
gykimo
题目:https://leetcode-cn.com/problems/lru-cache-lcci/
我的方法一:stl::list
步骤
get
使用stl::list来实现,按照顺序遍历list(即先push_back的先遍历到),当list没有对应的key时,返回-1
当list有对应的项时,将该项删除掉,然后通过push_front插入到列表的头上,这样优先级最高;
put
先顺序遍历list,当list没有对应的key时,创建一个新的,通过push_front插入到列表的头上,这样优先级最高;
当list有对应的key时,像get的操作一样,将该项删除掉,然后通过push_front插入到列表的头上,这样优先级最高;
因为有最大容量限制,所以当超过最大容量时,需要将列表最后一个项去掉;所以使用reverse_iterator获得最后一个项;然后通过reverse_iterator获得iterator进行删除
reverse_iterator转iterator的详细说明,请看https://www.jianshu.com/p/8a3cc02bab9a
复杂度
空间复杂度:O(n)
时间复杂度:get和put都是O(n),因为都需要遍历list
leetcode耗时300ms左右
代码
class LRUCache {
public:
LRUCache(int capacity) {
capacity_ = capacity;
}
int get(int key) {
for(list<Item>::iterator iter = cache_.begin();
iter != cache_.end(); iter++){
if(iter->key == key){
int value = iter->value;
cache_.erase(iter);
cache_.push_front(Item(key, value));
return value;
}
}
return -1;
}
void put(int key, int value) {
bool exist = false;
for(list<Item>::iterator iter = cache_.begin();
iter != cache_.end(); iter++){
if(iter->key == key) {
cache_.erase(iter);
cache_.push_front(Item(key, value));
exist = true;
break;
}
}
if(!exist){
cache_.push_front(Item(key, value));
}
if(cache_.size() > capacity_){
list<Item>::reverse_iterator iter = cache_.rbegin();
cache_.erase((++iter).base());
}
}
private:
struct Item {
int key;
int value;
Item(int k, int v){
key = k;
value = v;
}
};
list<Item> cache_;
int capacity_ = 0;
};
我的方法二: stl::map + 双向链表
复杂度
get是O(1),因为map通过key可以直接查到一个Node;并通过Node的双向指针可以在O(1)时间内,完成移到列表头;
put通过是O(1),因为put也是先查询,再移动到列表头
leetcode耗时76ms,确实比方法一有优化;
边界条件
主要考虑要操作的Node是first_或者last_的情况;
代码
class LRUCache {
public:
LRUCache(int capacity) {
capacity_ = capacity;
}
int get(int key) {
map<int, Node*>::iterator iter = caches_.find(key);
if(iter == caches_.end()){
return -1;
}
Node* node = iter->second;
remove(node);
insert_to_first(node);
return node->value;
}
void put(int key, int value) {
map<int, Node*>::iterator iter = caches_.find(key);
if(iter == caches_.end()){
Node* node = new Node();
node->key = key;
node->value = value;
node->next = 0;
node->pre = 0;
insert_to_first(node);
caches_[key] = node;
if(caches_.size() > capacity_){
int key = last_->key;
caches_.erase(key);
Node* last = last_;
remove(last_);
delete last;
}
return;
}
Node* node = iter->second;
node->value = value;
remove(node);
insert_to_first(node);
}
private:
struct Node {
int key;
int value;
Node* pre;
Node* next;
};
void remove(Node* node){
if(node == first_){
//size = 1
if(first_ == last_){
first_ = 0;
last_ = 0;
return;
}
first_ = first_->next;
first_->pre = 0;
} else if(node == last_){
//size = 1
if(first_ == last_){
first_ = 0;
last_ = 0;
return;
}
last_ = last_->pre;
last_->next = 0;
} else {
node->pre->next = node->next;
node->next->pre = node->pre;
}
}
void insert_to_first(Node* node){
if(!first_){
first_ = node;
node->pre = 0;
first_->next = 0;
last_ = node;
return;
}
if(first_ == node){
return;
}
node->next = first_;
first_->pre = node;
first_ = node;
}
Node* first_ = 0;
Node* last_ = 0;
map<int, Node*> caches_;
int capacity_ = 0;
};
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache* obj = new LRUCache(capacity);
* int param_1 = obj->get(key);
* obj->put(key,value);
*/