45 - 工厂模式之DI框架
2021-09-14 本文已影响0人
舍是境界
本文通过一个创建对象的工程,依赖注入框架,或者叫依赖注入容器(Dependency Injection Container),简称 DI 容器,让大家更深一步了解工厂模式
工厂模式和 DI 容器有何区别?
- 实际上,DI 容器底层最基本的设计思路就是基于工厂模式的。DI 容器相当于一个大的工厂类,负责在程序启动的时候,根据配置(要创建哪些类对象,每个类对象的创建需要依赖哪些其他类对象)事先创建好对象。当应用程序需要使用某个类对象的时候,直接从容器中获取即可。正是因为它持有一堆对象,所以这个框架才被称为“容器”。
- DI 容器相对于我们上节课讲的工厂模式的例子来说,它处理的是更大的对象创建工程。上节课讲的工厂模式中,一个工厂类只负责某个类对象或者某一组相关类对象(继承自同一抽象类或者接口的子类)的创建,而 DI 容器负责的是整个应用中所有类对象的创建。
- 除此之外,DI 容器负责的事情要比单纯的工厂模式要多。比如,它还包括配置的解析、对象生命周期的管理
DI 容器的核心功能有哪些?
配置解析
- 在工厂模式文章中,工厂类要创建哪个类对象是事先确定好的,并且是写死在工厂类代码中的。作为一个通用的框架来说,框架代码跟应用代码应该是高度解耦的,DI 容器事先并不知道应用会创建哪些对象,不可能把某个应用要创建的对象写死在框架代码中。所以,我们需要通过一种形式,让应用告知 DI 容器要创建哪些对象。这种形式就是我们要讲的配置。
- 我们将需要由 DI 容器来创建的类对象和创建类对象的必要信息(使用哪个构造函数以及对应的构造函数参数都是什么等等),放到配置文件中。容器读取配置文件,根据配置文件提供的信息来创建对象。
- 下面是一个典型的 Spring 容器的配置文件。Spring 容器读取这个配置文件,解析出要创建的两个对象:rateLimiter 和 redisCounter,并且得到两者的依赖关系:rateLimiter 依赖 redisCounter。
public class RateLimiter {
private RedisCounter redisCounter;
public RateLimiter(RedisCounter redisCounter) {
this.redisCounter = redisCounter;
}
public void test() {
System.out.println("Hello World!");
}
//...
}
public class RedisCounter {
private String ipAddress;
private int port;
public RedisCounter(String ipAddress, int port) {
this.ipAddress = ipAddress;
this.port = port;
}
//...
}
配置文件beans.xml:
<beans>
<bean id="rateLimiter" class="com.xzg.RateLimiter">
<constructor-arg ref="redisCounter"/>
</bean>
<bean id="redisCounter" class="com.xzg.redisCounter">
<constructor-arg type="String" value="127.0.0.1">
<constructor-arg type="int" value=1234>
</bean>
</beans>
对象创建
- 在 DI 容器中,如果我们给每个类都对应创建一个工厂类,那项目中类的个数会成倍增加,这会增加代码的维护成本。要解决这个问题并不难。我们只需要将所有类对象的创建都放到一个工厂类中完成就可以了,比如 BeansFactory。
- 如果要创建的类对象非常多,BeansFactory 会通过“反射”这种机制,它能在程序运行的过程中,动态地加载类、创建对象,不需要事先在代码中写死要创建哪些对象。所以,不管是创建一个对象还是十个对象,BeansFactory 工厂类代码都是一样的。
对象的生命周期管理
- 简单工厂模式有两种实现方式,一种是每次都返回新创建的对象,另一种是每次都返回同一个事先创建好的对象,也就是所谓的单例对象。在 Spring 框架中,我们可以通过配置 scope 属性,来区分这两种不同类型的对象。scope=prototype 表示返回新创建的对象,scope=singleton 表示返回单例对象。
- 除此之外,我们还可以配置对象是否支持懒加载。如果 lazy-init=true,对象在真正被使用到的时候(比如:BeansFactory.getBean(“userService”))才被被创建;如果 lazy-init=false,对象在应用启动的时候就事先创建好。
- 不仅如此,我们还可以配置对象的 init-method 和 destroy-method 方法,比如 init-method=loadProperties(),destroy-method=updateConfigFile()。DI 容器在创建好对象之后,会主动调用 init-method 属性指定的方法来初始化对象。在对象被最终销毁之前,DI 容器会主动调用 destroy-method 属性指定的方法来做一些清理工作,比如释放数据库连接池、关闭文件。
实现一个简单的 DI 容器
用 Java 语言来实现一个简单的 DI 容器,核心逻辑只需要包括这样两个部分:配置文件解析、根据配置文件通过“反射”语法来创建对象。
- 最小原型设计
- 本文为了让大家对工厂模式有个更深的理解,这里只实现一个 DI 容器的最小原型。像 Spring 框架这样的 DI 容器,它支持的配置格式非常灵活和复杂。为了简化代码实现,重点讲解原理,在最小原型中,我们只支持下面配置文件中涉及的配置语法。
配置文件beans.xml
<beans>
<bean id="rateLimiter" class="com.xzg.RateLimiter">
<constructor-arg ref="redisCounter"/>
</bean>
<bean id="redisCounter" class="com.xzg.redisCounter" scope="singleton" lazy-init="true">
<constructor-arg type="String" value="127.0.0.1">
<constructor-arg type="int" value=1234>
</bean>
</bean
- 最小原型的使用方式跟 Spring 框架非常类似,示例代码如下所示:
public class Demo {
public static void main(String[] args) {
ApplicationContext applicationContext = new ClassPathXmlApplicationContext(
"beans.xml");
RateLimiter rateLimiter = (RateLimiter) applicationContext.getBean("rateLimiter");
rateLimiter.test();
//...
}
}
- 提供执行入口
- 面向对象设计的最后一步是:组装类并提供执行入口。在这里,执行入口就是一组暴露给外部使用的接口和类。
- 通过刚刚的最小原型使用示例代码,我们可以看出,执行入口主要包含两部分:ApplicationContext 和 ClassPathXmlApplicationContext。其中,ApplicationContext 是接口,ClassPathXmlApplicationContext 是接口的实现类。两个类具体实现如下所示:
public interface ApplicationContext {
Object getBean(String beanId);
}
public class ClassPathXmlApplicationContext implements ApplicationContext {
private BeansFactory beansFactory;
private BeanConfigParser beanConfigParser;
public ClassPathXmlApplicationContext(String configLocation) {
this.beansFactory = new BeansFactory();
this.beanConfigParser = new XmlBeanConfigParser();
loadBeanDefinitions(configLocation);
}
private void loadBeanDefinitions(String configLocation) {
InputStream in = null;
try {
in = this.getClass().getResourceAsStream("/" + configLocation);
if (in == null) {
throw new RuntimeException("Can not find config file: " + configLocation);
}
List<BeanDefinition> beanDefinitions = beanConfigParser.parse(in);
beansFactory.addBeanDefinitions(beanDefinitions);
} finally {
if (in != null) {
try {
in.close();
} catch (IOException e) {
// TODO: log error
}
}
}
}
@Override
public Object getBean(String beanId) {
return beansFactory.getBean(beanId);
}
}
- 从上面的代码中,我们可以看出,ClassPathXmlApplicationContext 负责组装 BeansFactory 和 BeanConfigParser 两个类,串联执行流程:从 classpath 中加载 XML 格式的配置文件,通过 BeanConfigParser 解析为统一的 BeanDefinition 格式,然后,BeansFactory 根据 BeanDefinition 来创建对象。
- 配置文件解析
- 配置文件解析主要包含 BeanConfigParser 接口和 XmlBeanConfigParser 实现类,负责将配置文件解析为 BeanDefinition 结构,以便 BeansFactory 根据这个结构来创建对象。
public interface BeanConfigParser {
List<BeanDefinition> parse(InputStream inputStream);
List<BeanDefinition> parse(String configContent);
}
public class XmlBeanConfigParser implements BeanConfigParser {
@Override
public List<BeanDefinition> parse(InputStream inputStream) {
String content = null;
// TODO:...
return parse(content);
}
@Override
public List<BeanDefinition> parse(String configContent) {
List<BeanDefinition> beanDefinitions = new ArrayList<>();
// TODO:...
return beanDefinitions;
}
}
public class BeanDefinition {
private String id;
private String className;
private List<ConstructorArg> constructorArgs = new ArrayList<>();
private Scope scope = Scope.SINGLETON;
private boolean lazyInit = false;
// 省略必要的getter/setter/constructors
public boolean isSingleton() {
return scope.equals(Scope.SINGLETON);
}
public static enum Scope {
SINGLETON,
PROTOTYPE
}
public static class ConstructorArg {
private boolean isRef;
private Class type;
private Object arg;
// 省略必要的getter/setter/constructors
}
}
- 核心工厂类设计
- 如果对象的 scope 属性是 singleton,那对象创建之后会缓存在 singletonObjects 这样一个 map 中,下次再请求此对象的时候,直接从 map 中取出返回,不需要重新创建。如果对象的 scope 属性是 prototype,那每次请求对象,BeansFactory 都会创建一个新的对象返回。
- 实际上,BeansFactory 创建对象用到的主要技术点就是 Java 中的反射语法:一种动态加载类和创建对象的机制。我们知道,JVM 在启动的时候会根据代码自动地加载类、创建对象。至于都要加载哪些类、创建哪些对象,这些都是在代码中写死的,或者说提前写好的。但是,如果某个对象的创建并不是写死在代码中,而是放到配置文件中,我们需要在程序运行期间,动态地根据配置文件来加载类、创建对象,那这部分工作就没法让 JVM 帮我们自动完成了,我们需要利用 Java 提供的反射语法自己去编写代码。
public class BeansFactory {
private ConcurrentHashMap<String, Object> singletonObjects = new ConcurrentHashMap<>();
private ConcurrentHashMap<String, BeanDefinition> beanDefinitions = new ConcurrentHashMap<>();
public void addBeanDefinitions(List<BeanDefinition> beanDefinitionList) {
for (BeanDefinition beanDefinition : beanDefinitionList) {
this.beanDefinitions.putIfAbsent(beanDefinition.getId(), beanDefinition);
}
for (BeanDefinition beanDefinition : beanDefinitionList) {
if (beanDefinition.isLazyInit() == false && beanDefinition.isSingleton()) {
createBean(beanDefinition);
}
}
}
public Object getBean(String beanId) {
BeanDefinition beanDefinition = beanDefinitions.get(beanId);
if (beanDefinition == null) {
throw new NoSuchBeanDefinitionException("Bean is not defined: " + beanId);
}
return createBean(beanDefinition);
}
@VisibleForTesting
protected Object createBean(BeanDefinition beanDefinition) {
if (beanDefinition.isSingleton() && singletonObjects.contains(beanDefinition.getId())) {
return singletonObjects.get(beanDefinition.getId());
}
Object bean = null;
try {
Class beanClass = Class.forName(beanDefinition.getClassName());
List<BeanDefinition.ConstructorArg> args = beanDefinition.getConstructorArgs();
if (args.isEmpty()) {
bean = beanClass.newInstance();
} else {
Class[] argClasses = new Class[args.size()];
Object[] argObjects = new Object[args.size()];
for (int i = 0; i < args.size(); ++i) {
BeanDefinition.ConstructorArg arg = args.get(i);
if (!arg.getIsRef()) {
argClasses[i] = arg.getType();
argObjects[i] = arg.getArg();
} else {
BeanDefinition refBeanDefinition = beanDefinitions.get(arg.getArg());
if (refBeanDefinition == null) {
throw new NoSuchBeanDefinitionException("Bean is not defined: " + arg.getArg());
}
argClasses[i] = Class.forName(refBeanDefinition.getClassName());
argObjects[i] = createBean(refBeanDefinition);
}
}
bean = beanClass.getConstructor(argClasses).newInstance(argObjects);
}
} catch (ClassNotFoundException | IllegalAccessException
| InstantiationException | NoSuchMethodException | InvocationTargetException e) {
throw new BeanCreationFailureException("", e);
}
if (bean != null && beanDefinition.isSingleton()) {
singletonObjects.putIfAbsent(beanDefinition.getId(), bean);
return singletonObjects.get(beanDefinition.getId());
}
return bean;
}
}
小结
- DI 容器在一些软件开发中已经成为了标配,比如 Spring IOC、Google Guice。但是,大部分人可能只是把它当作一个黑盒子来使用,并未真正去了解它的底层是如何实现的。当然,如果只是做一些简单的小项目,简单会用就足够了,但是,如果我们面对的是非常复杂的系统,当系统出现问题的时候,对底层原理的掌握程度,决定了我们排查问题的能力,直接影响到我们排查问题的效率。
- BeansFactory 类中的 createBean() 函数是一个递归函数。当构造函数的参数是 ref 类型时,会递归地创建 ref 属性指向的对象。如果我们在配置文件中错误地配置了对象之间的依赖关系,导致存在循环依赖,那 BeansFactory 的 createBean() 函数是否会出现堆栈溢出?又该如何解决这个问题呢?
- 构造器循环依赖
构造器注入的循环依赖是无法解决的,只能抛出bean创建异常使容器无法启动
如何判断是循环依赖?
把正在创建的bean放入到一个(正在创建的map)中,如果依赖创建bean在此map中存在,则抛出异常。 - setter方法循环依赖
①单例情况可以解决循环依赖,方法是提前暴露一个返回该单例的工厂方法,让依赖对象可以引用到
②多例不能解决循环依赖,因为多例不需要缓存
- 构造器循环依赖