iOS动画

一篇文章剖析block底层源码以及Block.private

2019-09-20  本文已影响0人  太阳骑士索拉尔

关于我的仓库

前言

准备工作

最简单block

//OC代码
int main(int argc, const char * argv[]) {
    @autoreleasepool {
        void (^blk)(void) = ^{
            
            printf("Block\n");
        };
        
        blk();
    }
    return 0;
}
//经过clang转换后的C++代码
struct __block_impl {
  void *isa;
  int Flags;
  int Reserved;
  void *FuncPtr;
};

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself {

            printf("Block\n");
}

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};

int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));

        ((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
    }
    return 0;
}

__block_impl结构体

struct __block_impl {
  void *isa;
  int Flags;
  int Reserved;
  void *FuncPtr;
};

struct __main_block_impl_0结构体

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself)

static void __main_block_func_0(struct __main_block_impl_0 *__cself {

            printf("Block\n");
}

static struct __main_block_desc_0

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};

主函数【blk实际调用】

int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));

        ((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
    }
    return 0;
}
void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
// 这一段就是通过构造函数构造一个__main_block_impl_0结构体赋值给blk变量
// 翻译如下
struct __main_block_impl_0 temp = __main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA);
struct __main_block_impl_0 blk = &temp;

// 下面是调用block中函数的过程,我们可以看到我们要调用的其实就是FuncPtr这个函数指针指向的函数
// 查看__main_block_func_0的参数,发现就是我们上面研究的cself
// 所以,该调用翻译如下:
((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
blk->FuncPtr(blk);

截获自动变量的block

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        int dmy = 256;
        int val = 10;
        const char  *fmt = "val = %d\n";
        void (^blk)(void) = ^{
            
            printf(fmt, val);
        };
        val = 2;
        fmt = "THESE VALUES WERE CHANGED. val = %d\n";
        blk();
    }
    return 0;
}
struct __block_impl {
  void *isa;
  int Flags;
  int Reserved;
  void *FuncPtr;
};

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  const char *fmt;
  int val;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, const char *_fmt, int _val, int flags=0) : fmt(_fmt), val(_val) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself {
  const char *fmt = __cself->fmt; // bound by copy
  int val = __cself->val; // bound by copy
  
    printf(fmt, val);
}

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        int dmy = 256;
        int val = 10;
        const char *fmt = "val = %d\n";
        void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, fmt, val));
        val = 2;
        fmt = "THESE VALUES WERE CHANGED. val = %d\n";
        ((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
    }
    return 0;
}

新的__main_block_impl_0

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  const char *fmt;
  int val;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, const char *_fmt, int _val, int flags=0) : fmt(_fmt), val(_val) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

新的__main_block_func_0函数

static void __main_block_func_0(struct __main_block_impl_0 *__cself {
  const char *fmt = __cself->fmt; // bound by copy
  int val = __cself->val; // bound by copy
  
    printf(fmt, val);
}

没有截获自动变量,而是使用静态变量,全局变量情况

int global_val = 10; // 全局变量
static int static_global_val = 20; // 静态全局变量

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        static int static_val = 30; // 静态局部变量
        
        void (^myLocalBlock)(void) = ^{
            global_val *= 1;
            static_global_val *= 2;
            static_val *= 3;
            
            printf("static_val = %d, static_global_val = %d, global_val = %d\n",static_val, static_global_val, global_val);
        };
        
        myLocalBlock();
    }
    return 0;
}
struct __block_impl {
  void *isa;
  int Flags;
  int Reserved;
  void *FuncPtr;
};

int global_val = 10;
static int static_global_val = 20;


struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  int *static_val;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_static_val, int flags=0) : static_val(_static_val) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int *static_val = __cself->static_val; // bound by copy

            global_val *= 1;
            static_global_val *= 2;
            (*static_val) *= 3;

            printf("static_val = %d, static_global_val = %d, global_val = %d\n",(*static_val), static_global_val, global_val);
        }

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        static int static_val = 30;

        void (*myLocalBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, &static_val));

        ((void (*)(__block_impl *))((__block_impl *)myLocalBlock)->FuncPtr)((__block_impl *)myLocalBlock);
    }
    return 0;
}

新的__main_block_impl_0

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  int *static_val;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_static_val, int flags=0) : static_val(_static_val) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

新的__main_block_func_0函数

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int *static_val = __cself->static_val; // bound by copy

            global_val *= 1;
            static_global_val *= 2;
            (*static_val) *= 3;

            printf("static_val = %d, static_global_val = %d, global_val = %d\n",(*static_val), static_global_val, global_val);
}

使用__block修饰符的情况

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        
        __block int val = 10;
        void (^blk)(void) = ^{
            val = 1;
            printf("val = %d\n", val);
        };
        blk();
    }
    return 0;
}

struct __Block_byref_val_0 {
 void *__isa;
 __Block_byref_val_0 *__forwarding;
 int __flags;
 int __size;
 int val;
};

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __Block_byref_val_0 *val; // by ref
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_val_0 *_val, int flags=0) : val(_val->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_val_0 *val = __cself->val; // bound by ref

            (val->__forwarding->val) = 1;
            printf("val = %d\n", (val->__forwarding->val));
        }
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->val, (void*)src->val, 8/*BLOCK_FIELD_IS_BYREF*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->val, 8/*BLOCK_FIELD_IS_BYREF*/);}

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 

        __attribute__((__blocks__(byref))) __Block_byref_val_0 val = {(void*)0,(__Block_byref_val_0 *)&val, 0, sizeof(__Block_byref_val_0), 10};
        void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_val_0 *)&val, 570425344));
        ((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
    }
    return 0;
}

__Block_byref_val_0结构体

struct __Block_byref_val_0 {
 void *__isa;
 __Block_byref_val_0 *__forwarding;
 int __flags;
 int __size;
 int val;
};

__main_block_impl_0结构体

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __Block_byref_val_0 *val; // by ref
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_val_0 *_val, int flags=0) : val(_val->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

__main_block_func_0函数

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_val_0 *val = __cself->val; // bound by ref

            (val->__forwarding->val) = 1;
            printf("val = %d\n", (val->__forwarding->val));
}

主函数

int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 

        __attribute__((__blocks__(byref))) __Block_byref_val_0 val = {(void*)0,(__Block_byref_val_0 *)&val, 0, sizeof(__Block_byref_val_0), 10};
        void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_val_0 *)&val, 570425344));
        ((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
    }
    return 0;
}
__Block_byref_val_0 val = {
    (void*)0,
    (__Block_byref_val_0 *)&val, 
    0, 
    sizeof(__Block_byref_val_0), 
    10
};
DE5552A4-9145-44BB-920B-1F4BA1350266

使用__block修饰的OC对象

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        __block NSObject *obj = [[NSObject alloc] init];
        NSLog(@"1:%@", obj);
        void (^blk)(void) = ^{
            
            obj = [[NSObject alloc] init];
            NSLog(@"2:%@", obj);
        };
        blk();
    }
    return 0;
}
struct __block_impl {
  void *isa;
  int Flags;
  int Reserved;
  void *FuncPtr;
};

// line 109
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
 _Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
 _Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}

struct __Block_byref_obj_0 {
  void *__isa;
__Block_byref_obj_0 *__forwarding;
 int __flags;
 int __size;
 void (*__Block_byref_id_object_copy)(void*, void*);
 void (*__Block_byref_id_object_dispose)(void*);
 NSObject *obj;
};

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __Block_byref_obj_0 *obj; // by ref
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_obj_0 *_obj, int flags=0) : obj(_obj->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_obj_0 *obj = __cself->obj; // bound by ref


            (obj->__forwarding->obj) = ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"));
            NSLog((NSString *)&__NSConstantStringImpl__var_folders_fl_lthb7l6d16q33glgfvv7_md00000gn_T_main_de2130_mi_1, (obj->__forwarding->obj));
        }
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->obj, (void*)src->obj, 8/*BLOCK_FIELD_IS_BYREF*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->obj, 8/*BLOCK_FIELD_IS_BYREF*/);}

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        __attribute__((__blocks__(byref))) __Block_byref_obj_0 obj = {(void*)0,(__Block_byref_obj_0 *)&obj, 33554432, sizeof(__Block_byref_obj_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131, ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"))};
        NSLog((NSString *)&__NSConstantStringImpl__var_folders_fl_lthb7l6d16q33glgfvv7_md00000gn_T_main_de2130_mi_0, (obj.__forwarding->obj));
        void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_obj_0 *)&obj, 570425344));
        ((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
    }
    return 0;
}

__Block_byref_obj_0

struct __Block_byref_obj_0 {
  void *__isa;
__Block_byref_obj_0 *__forwarding;
 int __flags;
 int __size;
 void (*__Block_byref_id_object_copy)(void*, void*);
 void (*__Block_byref_id_object_dispose)(void*);
 NSObject *obj;
};
// 原文初始化obj
__attribute__((__blocks__(byref))) __Block_byref_obj_0 obj = {(void*)0,(__Block_byref_obj_0 *)&obj, 33554432, sizeof(__Block_byref_obj_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131, ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"))};

// 精简后初始化obj
obj = {
  (void*)0, // isa
  (__Block_byref_obj_0 *)&obj,  // __forwarding
  33554432, //  __flags
  sizeof(__Block_byref_obj_0),  // __size
  __Block_byref_id_object_copy_131, // __Block_byref_id_object_copy
  __Block_byref_id_object_dispose_131,  // __Block_byref_id_object_dispose
  ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"))    // obj
}

block 循环引用

- (id)init {
    self = [super init];
    blk_ = ^{NSLog(@"self = %@", self);};
    return self;
}

Block存储域&&Block元类

FAD217A2-5F67-40CE-8EF0-97B39C5F1E6F

_NSConcreteGlobalBlock

_NSConcreteStackBlock

36D368CB-F071-4BB8-A559-EF531F8D2569

_NSConcreteMallocBlock

609AFF6A-2136-49C8-B912-BFB40A4E496B

Block的拷贝情况

编译器判断的Block的自动拷贝

手动拷贝

Block 不同类的拷贝效果

Block 类 存储区域 拷贝效果
_NSConcreteStackBlock 栈区 从栈拷贝到堆
_NSConcreteGlobalBlock 程序的数据区域 不做改变
_NSConcreteMallocBlock 堆区 引用计数增加

__block变量的拷贝

__block 变量的配置存储区域 Block 从栈复制到堆时的影响
栈区 从栈复制到堆,并被 Block 所持有
堆区 被 Block 所持有

__forwarding永远都能正确访问变量

1B559743-50F3-49AE-9A28-50205F9FF0EE
int main(int argc, const char * argv[]) {
    @autoreleasepool {
        
        __block int val = 1;
        val++;
        printf("1. val = %d\n", val);
        void (^blk)(void) = ^{
            val++;
            printf("2. val = %d\n", val);
        };
        val++;
        printf("3. val = %d\n", val);
        blk();
        val++;
        printf("4. val = %d\n", val);
    }
    return 0;
}

// 打印结果为:
1. val = 2
3. val = 3
2. val = 4
4. val = 5
++(val->__forwarding->val);

解析Block.private

Block的定义

// Values for Block_layout->flags to describe block objects
enum {
    BLOCK_DEALLOCATING =      (0x0001),  // runtime
    BLOCK_REFCOUNT_MASK =     (0xfffe),  // runtime
    BLOCK_NEEDS_FREE =        (1 << 24), // runtime
    BLOCK_HAS_COPY_DISPOSE =  (1 << 25), // compiler
    BLOCK_HAS_CTOR =          (1 << 26), // compiler: helpers have C++ code
    BLOCK_IS_GC =             (1 << 27), // runtime
    BLOCK_IS_GLOBAL =         (1 << 28), // compiler
    BLOCK_USE_STRET =         (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
    BLOCK_HAS_SIGNATURE  =    (1 << 30), // compiler
    BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31)  // compiler
};

#define BLOCK_DESCRIPTOR_1 1
struct Block_descriptor_1 {
    uintptr_t reserved;
    uintptr_t size;
};

#define BLOCK_DESCRIPTOR_2 1
struct Block_descriptor_2 {
    // requires BLOCK_HAS_COPY_DISPOSE
    BlockCopyFunction copy;
    BlockDisposeFunction dispose;
};

#define BLOCK_DESCRIPTOR_3 1
struct Block_descriptor_3 {
    // requires BLOCK_HAS_SIGNATURE
    const char *signature;
    const char *layout;     // contents depend on BLOCK_HAS_EXTENDED_LAYOUT
};

struct Block_layout {
    void *isa;
    volatile int32_t flags; // contains ref count
    int32_t reserved;
    BlockInvokeFunction invoke;
    struct Block_descriptor_1 *descriptor;
    // imported variables
};

__block变量的定义

// Values for Block_byref->flags to describe __block variables
enum {
    // Byref refcount must use the same bits as Block_layout's refcount.
    // BLOCK_DEALLOCATING =      (0x0001),  // runtime
    // BLOCK_REFCOUNT_MASK =     (0xfffe),  // runtime

    BLOCK_BYREF_LAYOUT_MASK =       (0xf << 28), // compiler
    BLOCK_BYREF_LAYOUT_EXTENDED =   (  1 << 28), // compiler
    BLOCK_BYREF_LAYOUT_NON_OBJECT = (  2 << 28), // compiler
    BLOCK_BYREF_LAYOUT_STRONG =     (  3 << 28), // compiler
    BLOCK_BYREF_LAYOUT_WEAK =       (  4 << 28), // compiler
    BLOCK_BYREF_LAYOUT_UNRETAINED = (  5 << 28), // compiler

    BLOCK_BYREF_IS_GC =             (  1 << 27), // runtime

    BLOCK_BYREF_HAS_COPY_DISPOSE =  (  1 << 25), // compiler
    BLOCK_BYREF_NEEDS_FREE =        (  1 << 24), // runtime
};

struct Block_byref {
    void *isa;
    struct Block_byref *forwarding;
    volatile int32_t flags; // contains ref count
    uint32_t size;
};

struct Block_byref_2 {
    // requires BLOCK_BYREF_HAS_COPY_DISPOSE
    BlockByrefKeepFunction byref_keep;
    BlockByrefDestroyFunction byref_destroy;
};

struct Block_byref_3 {
    // requires BLOCK_BYREF_LAYOUT_EXTENDED
    const char *layout;
};

Block_copy以及Block_release的底层实现

Block_copy

// Create a heap based copy of a Block or simply add a reference to an existing one.
// This must be paired with Block_release to recover memory, even when running
// under Objective-C Garbage Collection.

// 创建块的基于堆的副本, 或者只需添加对现有块的引用
// 这必须与Block_release配对才能恢复内存, 即使在运行时
// 在Objective-C垃圾收集机制下
BLOCK_EXPORT void *_Block_copy(const void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);
// Copy, or bump refcount, of a block.  If really copying, call the copy helper if present.

// 块的复制或凹凸【???】引用计数。如果真的要复制,请调用复制助手(如果存在)
// 应该是说不要显式调用, 不过复制助手也是不能显式调用的
void *_Block_copy(const void *arg) {
    struct Block_layout *aBlock;

    if (!arg) return NULL;
    
    // The following would be better done as a switch statement
  
    // 下面最好使用switch语句
    // 这是FIXME?
    aBlock = (struct Block_layout *)arg;
    if (aBlock->flags & BLOCK_NEEDS_FREE) {
        // latches on high
        latching_incr_int(&aBlock->flags);
        return aBlock;
    }
    else if (aBlock->flags & BLOCK_IS_GLOBAL) {
        return aBlock;
    }
    else {
        // Its a stack block.  Make a copy.
        
        // 这是一个栈上的block,进行拷贝
        struct Block_layout *result =
            (struct Block_layout *)malloc(aBlock->descriptor->size);
        if (!result) return NULL;
        memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
      
        // 首先进行位拷贝
#if __has_feature(ptrauth_calls)
        // Resign the invoke pointer as it uses address authentication.
      
        // 在调用指针使用地址身份验证时将其重新制定
        result->invoke = aBlock->invoke;
#endif
        // reset refcount
      
        // 重置引用计数
        result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING);    // XXX not needed
      
        // 不需要XXX
        result->flags |= BLOCK_NEEDS_FREE | 2;  // logical refcount 1
        
        // 逻辑引用计数1
        _Block_call_copy_helper(result, aBlock);
        // Set isa last so memory analysis tools see a fully-initialized object.
      
        // 设置isa指向,以便于分析内存工具能够看到完全初始化的对象
        result->isa = _NSConcreteMallocBlock;
        return result;
    }
}

latching_incr_int()

static int32_t latching_incr_int(volatile int32_t *where) {
    while (1) {
        int32_t old_value = *where;
        if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
            return BLOCK_REFCOUNT_MASK;
        }
        if (OSAtomicCompareAndSwapInt(old_value, old_value+2, where)) {
            return old_value+2;
        }
    }
}

详解Block_copy

NSObject *obj = [[NSObject alloc] init];
void(^aBlock)() = ^{
  
  obj;
};
NSLog(@"%ld", CFGetRetainCount((__bridge void *)obj));

Block_release

// Lose the reference, and if heap based and last reference, recover the memory

// 失去引用,如果是这是基于堆的并且这是最后一个引用,恢复内存
BLOCK_EXPORT void _Block_release(const void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);
// API entry point to release a copied Block

// 释放复制块的API入口点
void _Block_release(const void *arg) {
    struct Block_layout *aBlock = (struct Block_layout *)arg;
    if (!aBlock) return;
    if (aBlock->flags & BLOCK_IS_GLOBAL) return;
    if (! (aBlock->flags & BLOCK_NEEDS_FREE)) return;

    if (latching_decr_int_should_deallocate(&aBlock->flags)) {
        _Block_call_dispose_helper(aBlock);
        _Block_destructInstance(aBlock);
        free(aBlock);
    }
}

latching_decr_int_should_deallocate

// return should_deallocate?
static bool latching_decr_int_should_deallocate(volatile int32_t *where) {
    while (1) {
        int32_t old_value = *where;
        if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
            return false; // latched high
        }
        if ((old_value & BLOCK_REFCOUNT_MASK) == 0) {
            return false;   // underflow, latch low
        }
        int32_t new_value = old_value - 2;
        bool result = false;
        if ((old_value & (BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING)) == 2) {
            new_value = old_value - 1;
            result = true;
        }
        if (OSAtomicCompareAndSwapInt(old_value, new_value, where)) {
            return result;
        }
    }
}

详解Block_release

_Block_object_assign以及_Block_object_dispose

__attribute__((__blocks__(byref))) __Block_byref_obj_0 obj = {(void*)0,(__Block_byref_obj_0 *)&obj, 33554432, sizeof(__Block_byref_obj_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131, ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"))};
// Runtime support functions used by compiler when generating copy/dispose helpers

// Values for _Block_object_assign() and _Block_object_dispose() parameters
enum {
    // see function implementation for a more complete description of these fields and combinations
    BLOCK_FIELD_IS_OBJECT   =  3,  // id, NSObject, __attribute__((NSObject)), block, ...   OC对象类型
    BLOCK_FIELD_IS_BLOCK    =  7,  // a block variable  另一个block
    BLOCK_FIELD_IS_BYREF    =  8,  // the on stack structure holding the __block variable   为一个被__block修饰后生成的结构体
    BLOCK_FIELD_IS_WEAK     = 16,  // declared __weak, only used in byref copy helpers  被__weak修饰过的弱引用,只在Block_byref管理内部对象内存时使用,也就是__block __weak id 
    BLOCK_BYREF_CALLER      = 128, // called from __block (byref) copy/dispose support routines.    在处理Block_byref内部对象内存的时候会加的一个额外标记,配合上面的枚举一起使用;
};

enum {
    BLOCK_ALL_COPY_DISPOSE_FLAGS = 
        BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_BYREF |
        BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER
};

_Block_object_assign

/
// When Blocks or Block_byrefs hold objects then their copy routine helpers use this entry point
// to do the assignment.
//
  
// blocks或block_byrefs保存对象时,它们的复制例程助手使用此入口点进行赋值。
void _Block_object_assign(void *destArg, const void *object, const int flags) {
    const void **dest = (const void **)destArg;
    ///  destArg为执行Block_copy()后的block中的对象、block、或者BYREF指针的指针,object为copy之前的变量指针。
    switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
      case BLOCK_FIELD_IS_OBJECT:
        // 
        /*******
        id object = ...;
        [^{ object; } copy];
        ********/
                /// 简单的指针赋值
        _Block_retain_object(object);
        *dest = object;
        break;

      case BLOCK_FIELD_IS_BLOCK:
        /*******
        void (^object)(void) = ...;
        [^{ object; } copy];
        ********/
                
        /// 当block捕获的变量为另外一个block时执行此步,copy一个新的block并赋值
        *dest = _Block_copy(object);
        break;
    
      case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
      /// 当block捕获的变量为__block修饰的变量时会执行此步,执行byref_copy操作
      case BLOCK_FIELD_IS_BYREF:
      /// 当block捕获的变量为__block修饰的变量时会执行此步,执行byref_copy操作
        /*******
         // copy the onstack __block container to the heap
         // Note this __weak is old GC-weak/MRC-unretained.
         // ARC-style __weak is handled by the copy helper directly.
         __block ... x;
         __weak __block ... x;
         [^{ x; } copy];
         ********/

        *dest = _Block_byref_copy(object);
        break;
        
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
        /*******
         // copy the actual field held in the __block container
         // Note this is MRC unretained __block only. 
         // ARC retained __block is handled by the copy helper directly.
         __block id object;
         __block void (^object)(void);
         [^{ object; } copy];
         ********/

        *dest = object;
        break;

      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK  | BLOCK_FIELD_IS_WEAK:
        /*******
         // copy the actual field held in the __block container
         // Note this __weak is old GC-weak/MRC-unretained.
         // ARC-style __weak is handled by the copy helper directly.
         __weak __block id object;
         __weak __block void (^object)(void);
         [^{ object; } copy];
         ********/

        *dest = object;
        break;

      default:
        break;
    }
}

_Block_byref_copy

// A closure has been copied and its fixup routine is asking us to fix up the reference to the shared byref data
/// 已经复制了一个闭包,它的修复例程要求我们修复对共享byref数据的引用
// Closures that aren't copied must still work, so everyone always accesses variables after dereferencing the forwarding ptr.
/// 未被复制的闭包必须仍然有效,因此每个人在取消对转发ptr的引用后总是访问变量。
// We ask if the byref pointer that we know about has already been copied to the heap, and if so, increment and return it.
/// 我们询问我们知道的byref指针是否已经复制到堆中,如果是,则递增并返回它。
// Otherwise we need to copy it and update the stack forwarding pointer
/// 否则我们需要复制它并更新堆栈转发指针
/// 机翻看的想吐🤮
static struct Block_byref *_Block_byref_copy(const void *arg) {
    struct Block_byref *src = (struct Block_byref *)arg;

    if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
        // src points to stack
        /// 对于栈上的byref,先分配内存,isa设置为NULL
        struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
        copy->isa = NULL;
        // byref value 4 is logical refcount of 2: one for caller, one for stack
        /// 新的byref的引用计数要设置为4,标记为堆,一份为调用方,一份为栈所有,所以为4【还是2为单位】
        copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
        copy->forwarding = copy; // patch heap copy to point to itself
        src->forwarding = copy;  // patch stack to point to heap copy
        /// 将当前byref以及malloc的byref的forwarding都指向堆byref,操作堆栈都是同一份东西
        copy->size = src->size;

        if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
            // Trust copy helper to copy everything of interest
            // If more than one field shows up in a byref block this is wrong XXX
            struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
            struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
            copy2->byref_keep = src2->byref_keep;
            // 执行byref的byref_keep函数(即assign函数,只是会加上BLOCK_BYREF_CALLER标志),管理捕获的对象内存
            copy2->byref_destroy = src2->byref_destroy;

            if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
                struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
                struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
                copy3->layout = src3->layout;
            }

            (*src2->byref_keep)(copy, src);
        }
        else {
            // Bitwise copy.
            // This copy includes Block_byref_3, if any.
          
            /// 如果捕获的是普通变量,就没有Block_byref_2,copy+1和src+1指向的就是Block_byref_3,执行字节拷贝。
            memmove(copy+1, src+1, src->size - sizeof(*src));
        }
    }
    // already copied to heap
    /// 如果该byref是存在于堆,则只需要增加其引用计数。
    else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
        latching_incr_int(&src->forwarding->flags);
    }
    
    return src->forwarding;
}

_Block_object_dispose

// When Blocks or Block_byrefs hold objects their destroy helper routines call this entry point
// to help dispose of the contents
void _Block_object_dispose(const void *object, const int flags) {
    switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
      case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
      case BLOCK_FIELD_IS_BYREF:
        // get rid of the __block data structure held in a Block
        _Block_byref_release(object);
        break;
      case BLOCK_FIELD_IS_BLOCK:
        _Block_release(object);
        break;
      case BLOCK_FIELD_IS_OBJECT:
        _Block_release_object(object);
        break;
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK  | BLOCK_FIELD_IS_WEAK:
        break;
      default:
        break;
    }
}
// 这部分有了上面的基础应该很好懂了

_Block_byref_release

static void _Block_byref_release(const void *arg) {
    struct Block_byref *byref = (struct Block_byref *)arg;

    // dereference the forwarding pointer since the compiler isn't doing this anymore (ever?)
    byref = byref->forwarding;
    
    if (byref->flags & BLOCK_BYREF_NEEDS_FREE) {
        int32_t refcount = byref->flags & BLOCK_REFCOUNT_MASK;
        os_assert(refcount);
        if (latching_decr_int_should_deallocate(&byref->flags)) {
            if (byref->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
                struct Block_byref_2 *byref2 = (struct Block_byref_2 *)(byref+1);
                (*byref2->byref_destroy)(byref);
            }
            free(byref);
        }
    }
}

附录:Block.h文件

/*
 *  Block.h
 *
 * Copyright (c) 2008-2010 Apple Inc. All rights reserved.
 *
 * @APPLE_LLVM_LICENSE_HEADER@
 *
 */

#ifndef _Block_H_
#define _Block_H_

#if !defined(BLOCK_EXPORT)
#   if defined(__cplusplus)
#       define BLOCK_EXPORT extern "C" 
#   else
#       define BLOCK_EXPORT extern
#   endif
#endif

#include <Availability.h>
#include <TargetConditionals.h>

#if __cplusplus
extern "C" {
#endif

// Create a heap based copy of a Block or simply add a reference to an existing one.
// 添加块的基于堆的副本【???】,或者只是添加对于现有块的引用
// This must be paired with Block_release to recover memory, even when running
// 即使在运行时,它【复制品】也必须要与block_release配对才能恢复内存【也就是引用计数管理】
// under Objective-C Garbage Collection.
// 处在OC垃圾收集机制下
BLOCK_EXPORT void *_Block_copy(const void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);

// Lose the reference, and if heap based and last reference, recover the memory
// 失去引用,并且该引用为基于堆的引用并且是最后一个引用,恢复内存【dealloc】
BLOCK_EXPORT void _Block_release(const void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);


// Used by the compiler. Do not call this function yourself.
// 编译器调用,不要自行调用该函数
BLOCK_EXPORT void _Block_object_assign(void *, const void *, const int)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);

// Used by the compiler. Do not call this function yourself.
// 编译器调用,不要自行调用该函数
BLOCK_EXPORT void _Block_object_dispose(const void *, const int)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);

// Used by the compiler. Do not call this function yourself.
// 编译器调用,不要自行调用该函数
BLOCK_EXPORT void * _NSConcreteGlobalBlock[32]
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);
BLOCK_EXPORT void * _NSConcreteStackBlock[32]
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);


#if __cplusplus
}
#endif

// Type correct macros
// 键入正确的宏

#define Block_copy(...) ((__typeof(__VA_ARGS__))_Block_copy((const void *)(__VA_ARGS__)))
#define Block_release(...) _Block_release((const void *)(__VA_ARGS__))


#endif

补充知识:extern “C”

附录:Block_private.h文件

/*
 * Block_private.h
 *
 * SPI for Blocks
 *
 * Copyright (c) 2008-2010 Apple Inc. All rights reserved.
 *
 * @APPLE_LLVM_LICENSE_HEADER@
 *
 */

#ifndef _BLOCK_PRIVATE_H_
#define _BLOCK_PRIVATE_H_

#include <Availability.h>
#include <AvailabilityMacros.h>
#include <TargetConditionals.h>

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>

#include <Block.h>

#if __has_include(<ptrauth.h>)
#include <ptrauth.h>
#endif

#if __has_feature(ptrauth_calls) &&  __cplusplus < 201103L

// C ptrauth or old C++ ptrauth

#define _Block_set_function_pointer(field, value)                       \
    ((value)                                                            \
     ? ((field) =                                                       \
        (__typeof__(field))                                             \
        ptrauth_auth_and_resign((void*)(value),                         \
                                ptrauth_key_function_pointer, 0,        \
                                ptrauth_key_block_function, &(field)))  \
     : ((field) = 0))

#define _Block_get_function_pointer(field)                              \
    ((field)                                                            \
     ? (__typeof__(field))                                              \
       ptrauth_auth_function((void*)(field),                            \
                             ptrauth_key_block_function, &(field))      \
     : (__typeof__(field))0)

#else

// C++11 ptrauth or no ptrauth

#define _Block_set_function_pointer(field, value)       \
    (field) = (value)

#define _Block_get_function_pointer(field)      \
    (field)

#endif


#if __has_feature(ptrauth_calls)  &&  __cplusplus >= 201103L

// StorageSignedFunctionPointer<Key, Fn> stores a function pointer of type
// Fn but signed with the given ptrauth key and with the address of its
// storage as extra data.
// Function pointers inside block objects are signed this way.
template <typename Fn, ptrauth_key Key>
class StorageSignedFunctionPointer {
    uintptr_t bits;

 public:

    // Authenticate function pointer fn as a C function pointer.
    // Re-sign it with our key and the storage address as extra data.
    // DOES NOT actually write to our storage.
    uintptr_t prepareWrite(Fn fn) const
    {
        if (fn == nullptr) {
            return 0;
        } else {
            return (uintptr_t)
                ptrauth_auth_and_resign(fn, ptrauth_key_function_pointer, 0,
                                        Key, &bits);
        }
    }

    // Authenticate otherBits at otherStorage.
    // Re-sign it with our storage address.
    // DOES NOT actually write to our storage.
    uintptr_t prepareWrite(const StorageSignedFunctionPointer& other) const
    {
        if (other.bits == 0) {
            return 0;
        } else {
            return (uintptr_t)
                ptrauth_auth_and_resign((void*)other.bits, Key, &other.bits,
                                        Key, &bits);
        }
    }

    // Authenticate ptr as if it were stored at our storage address.
    // Re-sign it as a C function pointer.
    // DOES NOT actually read from our storage.
    Fn completeReadFn(uintptr_t ptr) const
    {
        if (ptr == 0) {
            return nullptr;
        } else {
            return ptrauth_auth_function((Fn)ptr, Key, &bits);
        }
    }

    // Authenticate ptr as if it were at our storage address.
    // Return it as a dereferenceable pointer.
    // DOES NOT actually read from our storage.
    void* completeReadRaw(uintptr_t ptr) const
    {
        if (ptr == 0) {
            return nullptr;
        } else {
            return ptrauth_auth_data((void*)ptr, Key, &bits);
        }
    }

    StorageSignedFunctionPointer() { }

    StorageSignedFunctionPointer(Fn value)
        : bits(prepareWrite(value)) { }

    StorageSignedFunctionPointer(const StorageSignedFunctionPointer& value)
        : bits(prepareWrite(value)) { }

    StorageSignedFunctionPointer&
    operator = (Fn rhs) {
        bits = prepareWrite(rhs);
        return *this;
    }

    StorageSignedFunctionPointer&
    operator = (const StorageSignedFunctionPointer& rhs) {
        bits = prepareWrite(rhs);
        return *this;
    }

    operator Fn () const {
        return completeReadFn(bits);
    }

    explicit operator void* () const {
        return completeReadRaw(bits);
    }

    explicit operator bool () const {
        return completeReadRaw(bits) != nullptr;
    }
};

using BlockCopyFunction = StorageSignedFunctionPointer
    <void(*)(void *, const void *),
     ptrauth_key_block_function>;

using BlockDisposeFunction = StorageSignedFunctionPointer
    <void(*)(const void *),
     ptrauth_key_block_function>;

using BlockInvokeFunction = StorageSignedFunctionPointer
    <void(*)(void *, ...),
     ptrauth_key_block_function>;

using BlockByrefKeepFunction = StorageSignedFunctionPointer
    <void(*)(struct Block_byref *, struct Block_byref *),
     ptrauth_key_block_function>;

using BlockByrefDestroyFunction = StorageSignedFunctionPointer
    <void(*)(struct Block_byref *),
     ptrauth_key_block_function>;

// c++11 and ptrauth_calls
#elif !__has_feature(ptrauth_calls)
// not ptrauth_calls

typedef void(*BlockCopyFunction)(void *, const void *);
typedef void(*BlockDisposeFunction)(const void *);
typedef void(*BlockInvokeFunction)(void *, ...);
typedef void(*BlockByrefKeepFunction)(struct Block_byref*, struct Block_byref*);
typedef void(*BlockByrefDestroyFunction)(struct Block_byref *);

#else
// ptrauth_calls but not c++11

typedef uintptr_t BlockCopyFunction;
typedef uintptr_t BlockDisposeFunction;
typedef uintptr_t BlockInvokeFunction;
typedef uintptr_t BlockByrefKeepFunction;
typedef uintptr_t BlockByrefDestroyFunction;

#endif


// Values for Block_layout->flags to describe block objects
enum {
    BLOCK_DEALLOCATING =      (0x0001),  // runtime
    BLOCK_REFCOUNT_MASK =     (0xfffe),  // runtime
    BLOCK_NEEDS_FREE =        (1 << 24), // runtime
    BLOCK_HAS_COPY_DISPOSE =  (1 << 25), // compiler
    BLOCK_HAS_CTOR =          (1 << 26), // compiler: helpers have C++ code
    BLOCK_IS_GC =             (1 << 27), // runtime
    BLOCK_IS_GLOBAL =         (1 << 28), // compiler
    BLOCK_USE_STRET =         (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
    BLOCK_HAS_SIGNATURE  =    (1 << 30), // compiler
    BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31)  // compiler
};

#define BLOCK_DESCRIPTOR_1 1
struct Block_descriptor_1 {
    uintptr_t reserved;
    uintptr_t size;
};

#define BLOCK_DESCRIPTOR_2 1
struct Block_descriptor_2 {
    // requires BLOCK_HAS_COPY_DISPOSE
    BlockCopyFunction copy;
    BlockDisposeFunction dispose;
};

#define BLOCK_DESCRIPTOR_3 1
struct Block_descriptor_3 {
    // requires BLOCK_HAS_SIGNATURE
    const char *signature;
    const char *layout;     // contents depend on BLOCK_HAS_EXTENDED_LAYOUT
};

struct Block_layout {
    void *isa;
    volatile int32_t flags; // contains ref count
    int32_t reserved;
    BlockInvokeFunction invoke;
    struct Block_descriptor_1 *descriptor;
    // imported variables
};


// Values for Block_byref->flags to describe __block variables
enum {
    // Byref refcount must use the same bits as Block_layout's refcount.
    // BLOCK_DEALLOCATING =      (0x0001),  // runtime
    // BLOCK_REFCOUNT_MASK =     (0xfffe),  // runtime

    BLOCK_BYREF_LAYOUT_MASK =       (0xf << 28), // compiler
    BLOCK_BYREF_LAYOUT_EXTENDED =   (  1 << 28), // compiler
    BLOCK_BYREF_LAYOUT_NON_OBJECT = (  2 << 28), // compiler
    BLOCK_BYREF_LAYOUT_STRONG =     (  3 << 28), // compiler
    BLOCK_BYREF_LAYOUT_WEAK =       (  4 << 28), // compiler
    BLOCK_BYREF_LAYOUT_UNRETAINED = (  5 << 28), // compiler

    BLOCK_BYREF_IS_GC =             (  1 << 27), // runtime

    BLOCK_BYREF_HAS_COPY_DISPOSE =  (  1 << 25), // compiler
    BLOCK_BYREF_NEEDS_FREE =        (  1 << 24), // runtime
};

struct Block_byref {
    void *isa;
    struct Block_byref *forwarding;
    volatile int32_t flags; // contains ref count
    uint32_t size;
};

struct Block_byref_2 {
    // requires BLOCK_BYREF_HAS_COPY_DISPOSE
    BlockByrefKeepFunction byref_keep;
    BlockByrefDestroyFunction byref_destroy;
};

struct Block_byref_3 {
    // requires BLOCK_BYREF_LAYOUT_EXTENDED
    const char *layout;
};


// Extended layout encoding.

// Values for Block_descriptor_3->layout with BLOCK_HAS_EXTENDED_LAYOUT
// and for Block_byref_3->layout with BLOCK_BYREF_LAYOUT_EXTENDED

// If the layout field is less than 0x1000, then it is a compact encoding 
// of the form 0xXYZ: X strong pointers, then Y byref pointers, 
// then Z weak pointers.

// If the layout field is 0x1000 or greater, it points to a 
// string of layout bytes. Each byte is of the form 0xPN.
// Operator P is from the list below. Value N is a parameter for the operator.
// Byte 0x00 terminates the layout; remaining block data is non-pointer bytes.

enum {
    BLOCK_LAYOUT_ESCAPE = 0, // N=0 halt, rest is non-pointer. N!=0 reserved.
    BLOCK_LAYOUT_NON_OBJECT_BYTES = 1,    // N bytes non-objects
    BLOCK_LAYOUT_NON_OBJECT_WORDS = 2,    // N words non-objects
    BLOCK_LAYOUT_STRONG           = 3,    // N words strong pointers
    BLOCK_LAYOUT_BYREF            = 4,    // N words byref pointers
    BLOCK_LAYOUT_WEAK             = 5,    // N words weak pointers
    BLOCK_LAYOUT_UNRETAINED       = 6,    // N words unretained pointers
    BLOCK_LAYOUT_UNKNOWN_WORDS_7  = 7,    // N words, reserved
    BLOCK_LAYOUT_UNKNOWN_WORDS_8  = 8,    // N words, reserved
    BLOCK_LAYOUT_UNKNOWN_WORDS_9  = 9,    // N words, reserved
    BLOCK_LAYOUT_UNKNOWN_WORDS_A  = 0xA,  // N words, reserved
    BLOCK_LAYOUT_UNUSED_B         = 0xB,  // unspecified, reserved
    BLOCK_LAYOUT_UNUSED_C         = 0xC,  // unspecified, reserved
    BLOCK_LAYOUT_UNUSED_D         = 0xD,  // unspecified, reserved
    BLOCK_LAYOUT_UNUSED_E         = 0xE,  // unspecified, reserved
    BLOCK_LAYOUT_UNUSED_F         = 0xF,  // unspecified, reserved
};


// Runtime support functions used by compiler when generating copy/dispose helpers

// Values for _Block_object_assign() and _Block_object_dispose() parameters
enum {
    // see function implementation for a more complete description of these fields and combinations
    BLOCK_FIELD_IS_OBJECT   =  3,  // id, NSObject, __attribute__((NSObject)), block, ...
    BLOCK_FIELD_IS_BLOCK    =  7,  // a block variable
    BLOCK_FIELD_IS_BYREF    =  8,  // the on stack structure holding the __block variable
    BLOCK_FIELD_IS_WEAK     = 16,  // declared __weak, only used in byref copy helpers
    BLOCK_BYREF_CALLER      = 128, // called from __block (byref) copy/dispose support routines.
};

enum {
    BLOCK_ALL_COPY_DISPOSE_FLAGS = 
        BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_BYREF |
        BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER
};


// Function pointer accessors

static inline __typeof__(void (*)(void *, ...))
_Block_get_invoke_fn(struct Block_layout *block)
{
    return (void (*)(void *, ...))_Block_get_function_pointer(block->invoke);
}

static inline void 
_Block_set_invoke_fn(struct Block_layout *block, void (*fn)(void *, ...))
{
    _Block_set_function_pointer(block->invoke, fn);
}


static inline __typeof__(void (*)(void *, const void *))
_Block_get_copy_fn(struct Block_descriptor_2 *desc)
{
    return (void (*)(void *, const void *))_Block_get_function_pointer(desc->copy);
}

static inline void 
_Block_set_copy_fn(struct Block_descriptor_2 *desc,
                   void (*fn)(void *, const void *))
{
    _Block_set_function_pointer(desc->copy, fn);
}


static inline __typeof__(void (*)(const void *))
_Block_get_dispose_fn(struct Block_descriptor_2 *desc)
{
    return (void (*)(const void *))_Block_get_function_pointer(desc->dispose);
}

static inline void 
_Block_set_dispose_fn(struct Block_descriptor_2 *desc,
                      void (*fn)(const void *))
{
    _Block_set_function_pointer(desc->dispose, fn);
}


// Other support functions


// runtime entry to get total size of a closure
BLOCK_EXPORT size_t Block_size(void *aBlock);

// indicates whether block was compiled with compiler that sets the ABI related metadata bits
BLOCK_EXPORT bool _Block_has_signature(void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);

// returns TRUE if return value of block is on the stack, FALSE otherwise
BLOCK_EXPORT bool _Block_use_stret(void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);

// Returns a string describing the block's parameter and return types.
// The encoding scheme is the same as Objective-C @encode.
// Returns NULL for blocks compiled with some compilers.
BLOCK_EXPORT const char * _Block_signature(void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);

// Returns a string describing the block's GC layout.
// This uses the GC skip/scan encoding.
// May return NULL.
BLOCK_EXPORT const char * _Block_layout(void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);

// Returns a string describing the block's layout.
// This uses the "extended layout" form described above.
// May return NULL.
BLOCK_EXPORT const char * _Block_extended_layout(void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_8, __IPHONE_7_0);

// Callable only from the ARR weak subsystem while in exclusion zone
BLOCK_EXPORT bool _Block_tryRetain(const void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);

// Callable only from the ARR weak subsystem while in exclusion zone
BLOCK_EXPORT bool _Block_isDeallocating(const void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);


// the raw data space for runtime classes for blocks
// class+meta used for stack, malloc, and collectable based blocks
BLOCK_EXPORT void * _NSConcreteMallocBlock[32]
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);
BLOCK_EXPORT void * _NSConcreteAutoBlock[32]
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);
BLOCK_EXPORT void * _NSConcreteFinalizingBlock[32]
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);
BLOCK_EXPORT void * _NSConcreteWeakBlockVariable[32]
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);
// declared in Block.h
// BLOCK_EXPORT void * _NSConcreteGlobalBlock[32];
// BLOCK_EXPORT void * _NSConcreteStackBlock[32];


struct Block_callbacks_RR {
    size_t  size;                   // size == sizeof(struct Block_callbacks_RR)
    void  (*retain)(const void *);
    void  (*release)(const void *);
    void  (*destructInstance)(const void *);
};
typedef struct Block_callbacks_RR Block_callbacks_RR;

BLOCK_EXPORT void _Block_use_RR2(const Block_callbacks_RR *callbacks);


#endif

附录:runtime.cpp

/*
 * runtime.cpp
 * libclosure
 *
 * Copyright (c) 2008-2010 Apple Inc. All rights reserved.
 *
 * @APPLE_LLVM_LICENSE_HEADER@
 */


#include "Block_private.h"
#include <platform/string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <dlfcn.h>
#include <os/assumes.h>
#ifndef os_assumes
#define os_assumes(_x) os_assumes(_x)
#endif
#ifndef os_assert
#define os_assert(_x) os_assert(_x)
#endif

#define memmove _platform_memmove

#if TARGET_OS_WIN32
#define _CRT_SECURE_NO_WARNINGS 1
#include <windows.h>
static __inline bool OSAtomicCompareAndSwapLong(long oldl, long newl, long volatile *dst) 
{ 
    // fixme barrier is overkill -- see objc-os.h
    long original = InterlockedCompareExchange(dst, newl, oldl);
    return (original == oldl);
}

static __inline bool OSAtomicCompareAndSwapInt(int oldi, int newi, int volatile *dst) 
{ 
    // fixme barrier is overkill -- see objc-os.h
    int original = InterlockedCompareExchange(dst, newi, oldi);
    return (original == oldi);
}
#else
#define OSAtomicCompareAndSwapLong(_Old, _New, _Ptr) __sync_bool_compare_and_swap(_Ptr, _Old, _New)
#define OSAtomicCompareAndSwapInt(_Old, _New, _Ptr) __sync_bool_compare_and_swap(_Ptr, _Old, _New)
#endif


/*******************************************************************************
Internal Utilities
********************************************************************************/

static int32_t latching_incr_int(volatile int32_t *where) {
    while (1) {
        int32_t old_value = *where;
        if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
            return BLOCK_REFCOUNT_MASK;
        }
        if (OSAtomicCompareAndSwapInt(old_value, old_value+2, where)) {
            return old_value+2;
        }
    }
}

static bool latching_incr_int_not_deallocating(volatile int32_t *where) {
    while (1) {
        int32_t old_value = *where;
        if (old_value & BLOCK_DEALLOCATING) {
            // if deallocating we can't do this
            return false;
        }
        if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
            // if latched, we're leaking this block, and we succeed
            return true;
        }
        if (OSAtomicCompareAndSwapInt(old_value, old_value+2, where)) {
            // otherwise, we must store a new retained value without the deallocating bit set
            return true;
        }
    }
}


// return should_deallocate?
static bool latching_decr_int_should_deallocate(volatile int32_t *where) {
    while (1) {
        int32_t old_value = *where;
        if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
            return false; // latched high
        }
        if ((old_value & BLOCK_REFCOUNT_MASK) == 0) {
            return false;   // underflow, latch low
        }
        int32_t new_value = old_value - 2;
        bool result = false;
        if ((old_value & (BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING)) == 2) {
            new_value = old_value - 1;
            result = true;
        }
        if (OSAtomicCompareAndSwapInt(old_value, new_value, where)) {
            return result;
        }
    }
}


/**************************************************************************
Framework callback functions and their default implementations.
***************************************************************************/
#if !TARGET_OS_WIN32
#pragma mark Framework Callback Routines
#endif

static void _Block_retain_object_default(const void *ptr __unused) { }

static void _Block_release_object_default(const void *ptr __unused) { }

static void _Block_destructInstance_default(const void *aBlock __unused) {}

static void (*_Block_retain_object)(const void *ptr) = _Block_retain_object_default;
static void (*_Block_release_object)(const void *ptr) = _Block_release_object_default;
static void (*_Block_destructInstance) (const void *aBlock) = _Block_destructInstance_default;


/**************************************************************************
Callback registration from ObjC runtime and CoreFoundation
***************************************************************************/

void _Block_use_RR2(const Block_callbacks_RR *callbacks) {
    _Block_retain_object = callbacks->retain;
    _Block_release_object = callbacks->release;
    _Block_destructInstance = callbacks->destructInstance;
}

/****************************************************************************
Accessors for block descriptor fields
*****************************************************************************/
#if 0
static struct Block_descriptor_1 * _Block_descriptor_1(struct Block_layout *aBlock)
{
    return aBlock->descriptor;
}
#endif

static struct Block_descriptor_2 * _Block_descriptor_2(struct Block_layout *aBlock)
{
    if (! (aBlock->flags & BLOCK_HAS_COPY_DISPOSE)) return NULL;
    uint8_t *desc = (uint8_t *)aBlock->descriptor;
    desc += sizeof(struct Block_descriptor_1);
    return (struct Block_descriptor_2 *)desc;
}

static struct Block_descriptor_3 * _Block_descriptor_3(struct Block_layout *aBlock)
{
    if (! (aBlock->flags & BLOCK_HAS_SIGNATURE)) return NULL;
    uint8_t *desc = (uint8_t *)aBlock->descriptor;
    desc += sizeof(struct Block_descriptor_1);
    if (aBlock->flags & BLOCK_HAS_COPY_DISPOSE) {
        desc += sizeof(struct Block_descriptor_2);
    }
    return (struct Block_descriptor_3 *)desc;
}

static void _Block_call_copy_helper(void *result, struct Block_layout *aBlock)
{
    struct Block_descriptor_2 *desc = _Block_descriptor_2(aBlock);
    if (!desc) return;

    (*desc->copy)(result, aBlock); // do fixup
}

static void _Block_call_dispose_helper(struct Block_layout *aBlock)
{
    struct Block_descriptor_2 *desc = _Block_descriptor_2(aBlock);
    if (!desc) return;

    (*desc->dispose)(aBlock);
}

/*******************************************************************************
Internal Support routines for copying
********************************************************************************/

#if !TARGET_OS_WIN32
#pragma mark Copy/Release support
#endif

// Copy, or bump refcount, of a block.  If really copying, call the copy helper if present.
void *_Block_copy(const void *arg) {
    struct Block_layout *aBlock;

    if (!arg) return NULL;
    
    // The following would be better done as a switch statement
    aBlock = (struct Block_layout *)arg;
    if (aBlock->flags & BLOCK_NEEDS_FREE) {
        // latches on high
        latching_incr_int(&aBlock->flags);
        return aBlock;
    }
    else if (aBlock->flags & BLOCK_IS_GLOBAL) {
        return aBlock;
    }
    else {
        // Its a stack block.  Make a copy.
        struct Block_layout *result =
            (struct Block_layout *)malloc(aBlock->descriptor->size);
        if (!result) return NULL;
        memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
#if __has_feature(ptrauth_calls)
        // Resign the invoke pointer as it uses address authentication.
        result->invoke = aBlock->invoke;
#endif
        // reset refcount
        result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING);    // XXX not needed
        result->flags |= BLOCK_NEEDS_FREE | 2;  // logical refcount 1
        _Block_call_copy_helper(result, aBlock);
        // Set isa last so memory analysis tools see a fully-initialized object.
        result->isa = _NSConcreteMallocBlock;
        return result;
    }
}


// Runtime entry points for maintaining the sharing knowledge of byref data blocks.

// A closure has been copied and its fixup routine is asking us to fix up the reference to the shared byref data
// Closures that aren't copied must still work, so everyone always accesses variables after dereferencing the forwarding ptr.
// We ask if the byref pointer that we know about has already been copied to the heap, and if so, increment and return it.
// Otherwise we need to copy it and update the stack forwarding pointer
static struct Block_byref *_Block_byref_copy(const void *arg) {
    struct Block_byref *src = (struct Block_byref *)arg;

    if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
        // src points to stack
        struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
        copy->isa = NULL;
        // byref value 4 is logical refcount of 2: one for caller, one for stack
        copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
        copy->forwarding = copy; // patch heap copy to point to itself
        src->forwarding = copy;  // patch stack to point to heap copy
        copy->size = src->size;

        if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
            // Trust copy helper to copy everything of interest
            // If more than one field shows up in a byref block this is wrong XXX
            struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
            struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
            copy2->byref_keep = src2->byref_keep;
            copy2->byref_destroy = src2->byref_destroy;

            if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
                struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
                struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
                copy3->layout = src3->layout;
            }

            (*src2->byref_keep)(copy, src);
        }
        else {
            // Bitwise copy.
            // This copy includes Block_byref_3, if any.
            memmove(copy+1, src+1, src->size - sizeof(*src));
        }
    }
    // already copied to heap
    else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
        latching_incr_int(&src->forwarding->flags);
    }
    
    return src->forwarding;
}

static void _Block_byref_release(const void *arg) {
    struct Block_byref *byref = (struct Block_byref *)arg;

    // dereference the forwarding pointer since the compiler isn't doing this anymore (ever?)
    byref = byref->forwarding;
    
    if (byref->flags & BLOCK_BYREF_NEEDS_FREE) {
        int32_t refcount = byref->flags & BLOCK_REFCOUNT_MASK;
        os_assert(refcount);
        if (latching_decr_int_should_deallocate(&byref->flags)) {
            if (byref->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
                struct Block_byref_2 *byref2 = (struct Block_byref_2 *)(byref+1);
                (*byref2->byref_destroy)(byref);
            }
            free(byref);
        }
    }
}


/************************************************************
 *
 * API supporting SPI
 * _Block_copy, _Block_release, and (old) _Block_destroy
 *
 ***********************************************************/

#if !TARGET_OS_WIN32
#pragma mark SPI/API
#endif


// API entry point to release a copied Block
void _Block_release(const void *arg) {
    struct Block_layout *aBlock = (struct Block_layout *)arg;
    if (!aBlock) return;
    if (aBlock->flags & BLOCK_IS_GLOBAL) return;
    if (! (aBlock->flags & BLOCK_NEEDS_FREE)) return;

    if (latching_decr_int_should_deallocate(&aBlock->flags)) {
        _Block_call_dispose_helper(aBlock);
        _Block_destructInstance(aBlock);
        free(aBlock);
    }
}

bool _Block_tryRetain(const void *arg) {
    struct Block_layout *aBlock = (struct Block_layout *)arg;
    return latching_incr_int_not_deallocating(&aBlock->flags);
}

bool _Block_isDeallocating(const void *arg) {
    struct Block_layout *aBlock = (struct Block_layout *)arg;
    return (aBlock->flags & BLOCK_DEALLOCATING) != 0;
}


/************************************************************
 *
 * SPI used by other layers
 *
 ***********************************************************/

size_t Block_size(void *aBlock) {
    return ((struct Block_layout *)aBlock)->descriptor->size;
}

bool _Block_use_stret(void *aBlock) {
    struct Block_layout *layout = (struct Block_layout *)aBlock;

    int requiredFlags = BLOCK_HAS_SIGNATURE | BLOCK_USE_STRET;
    return (layout->flags & requiredFlags) == requiredFlags;
}

// Checks for a valid signature, not merely the BLOCK_HAS_SIGNATURE bit.
bool _Block_has_signature(void *aBlock) {
    return _Block_signature(aBlock) ? true : false;
}

const char * _Block_signature(void *aBlock)
{
    struct Block_layout *layout = (struct Block_layout *)aBlock;
    struct Block_descriptor_3 *desc3 = _Block_descriptor_3(layout);
    if (!desc3) return NULL;

    return desc3->signature;
}

const char * _Block_layout(void *aBlock)
{
    // Don't return extended layout to callers expecting old GC layout
    struct Block_layout *layout = (struct Block_layout *)aBlock;
    if (layout->flags & BLOCK_HAS_EXTENDED_LAYOUT) return NULL;

    struct Block_descriptor_3 *desc3 = _Block_descriptor_3(layout);
    if (!desc3) return NULL;

    return desc3->layout;
}

const char * _Block_extended_layout(void *aBlock)
{
    // Don't return old GC layout to callers expecting extended layout
    struct Block_layout *layout = (struct Block_layout *)aBlock;
    if (! (layout->flags & BLOCK_HAS_EXTENDED_LAYOUT)) return NULL;

    struct Block_descriptor_3 *desc3 = _Block_descriptor_3(layout);
    if (!desc3) return NULL;

    // Return empty string (all non-object bytes) instead of NULL 
    // so callers can distinguish "empty layout" from "no layout".
    if (!desc3->layout) return "";
    else return desc3->layout;
}

#if !TARGET_OS_WIN32
#pragma mark Compiler SPI entry points
#endif

    
/*******************************************************

Entry points used by the compiler - the real API!


A Block can reference four different kinds of things that require help when the Block is copied to the heap.
1) C++ stack based objects
2) References to Objective-C objects
3) Other Blocks
4) __block variables

In these cases helper functions are synthesized by the compiler for use in Block_copy and Block_release, called the copy and dispose helpers.  The copy helper emits a call to the C++ const copy constructor for C++ stack based objects and for the rest calls into the runtime support function _Block_object_assign.  The dispose helper has a call to the C++ destructor for case 1 and a call into _Block_object_dispose for the rest.

The flags parameter of _Block_object_assign and _Block_object_dispose is set to
    * BLOCK_FIELD_IS_OBJECT (3), for the case of an Objective-C Object,
    * BLOCK_FIELD_IS_BLOCK (7), for the case of another Block, and
    * BLOCK_FIELD_IS_BYREF (8), for the case of a __block variable.
If the __block variable is marked weak the compiler also or's in BLOCK_FIELD_IS_WEAK (16)

So the Block copy/dispose helpers should only ever generate the four flag values of 3, 7, 8, and 24.

When  a __block variable is either a C++ object, an Objective-C object, or another Block then the compiler also generates copy/dispose helper functions.  Similarly to the Block copy helper, the "__block" copy helper (formerly and still a.k.a. "byref" copy helper) will do a C++ copy constructor (not a const one though!) and the dispose helper will do the destructor.  And similarly the helpers will call into the same two support functions with the same values for objects and Blocks with the additional BLOCK_BYREF_CALLER (128) bit of information supplied.

So the __block copy/dispose helpers will generate flag values of 3 or 7 for objects and Blocks respectively, with BLOCK_FIELD_IS_WEAK (16) or'ed as appropriate and always 128 or'd in, for the following set of possibilities:
    __block id                   128+3       (0x83)
    __block (^Block)             128+7       (0x87)
    __weak __block id            128+3+16    (0x93)
    __weak __block (^Block)      128+7+16    (0x97)
        

********************************************************/

//
// When Blocks or Block_byrefs hold objects then their copy routine helpers use this entry point
// to do the assignment.
//
void _Block_object_assign(void *destArg, const void *object, const int flags) {
    const void **dest = (const void **)destArg;
    switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
      case BLOCK_FIELD_IS_OBJECT:
        /*******
        id object = ...;
        [^{ object; } copy];
        ********/

        _Block_retain_object(object);
        *dest = object;
        break;

      case BLOCK_FIELD_IS_BLOCK:
        /*******
        void (^object)(void) = ...;
        [^{ object; } copy];
        ********/

        *dest = _Block_copy(object);
        break;
    
      case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
      case BLOCK_FIELD_IS_BYREF:
        /*******
         // copy the onstack __block container to the heap
         // Note this __weak is old GC-weak/MRC-unretained.
         // ARC-style __weak is handled by the copy helper directly.
         __block ... x;
         __weak __block ... x;
         [^{ x; } copy];
         ********/

        *dest = _Block_byref_copy(object);
        break;
        
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
        /*******
         // copy the actual field held in the __block container
         // Note this is MRC unretained __block only. 
         // ARC retained __block is handled by the copy helper directly.
         __block id object;
         __block void (^object)(void);
         [^{ object; } copy];
         ********/

        *dest = object;
        break;

      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK  | BLOCK_FIELD_IS_WEAK:
        /*******
         // copy the actual field held in the __block container
         // Note this __weak is old GC-weak/MRC-unretained.
         // ARC-style __weak is handled by the copy helper directly.
         __weak __block id object;
         __weak __block void (^object)(void);
         [^{ object; } copy];
         ********/

        *dest = object;
        break;

      default:
        break;
    }
}

// When Blocks or Block_byrefs hold objects their destroy helper routines call this entry point
// to help dispose of the contents
void _Block_object_dispose(const void *object, const int flags) {
    switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
      case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
      case BLOCK_FIELD_IS_BYREF:
        // get rid of the __block data structure held in a Block
        _Block_byref_release(object);
        break;
      case BLOCK_FIELD_IS_BLOCK:
        _Block_release(object);
        break;
      case BLOCK_FIELD_IS_OBJECT:
        _Block_release_object(object);
        break;
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK  | BLOCK_FIELD_IS_WEAK:
        break;
      default:
        break;
    }
}


// Workaround for <rdar://26015603> dylib with no __DATA segment fails to rebase
__attribute__((used))
static int let_there_be_data = 42;
上一篇 下一篇

猜你喜欢

热点阅读