中国老年人婚姻状况图(数据转换及拼图)

2019-08-23  本文已影响0人  冬之心
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE)

自然数转为比例

语法

rescale(x, to = c(0, 1), from = range(x, na.rm = TRUE, finite = TRUE), ...)

参数

例子

library(scales)

x <- c(127.31, 5787.47, 3703.58, 78.61)

#转成(0,1)区间,输入范围为 [0,sum(x)]  ,实际上算的是各值占比。
rescale(x, to=c(0,1), from=c(0,sum(x)))

#转成(0,100)区间
rescale(x, to=c(0,100), from=c(0,sum(x)))

小数点转成百分比

语法

percent(x, accuracy = NULL, scale = 100, prefix = "",
suffix = "%", big.mark = " ", decimal.mark = ".", trim = TRUE,
...)

参数

percent(rescale(x, to=c(0,1), from=c(0,sum(x[1:4]))))
[1] "0%" "17%" "33%" "50%" "67%" "83%" "100%" "117%" "133%" "150%" "167%" "833%"
percent(rescale(x, to=c(0,1), from=c(0,sum(x[1:4]))), trim=FASLE)
[1] " 0%" " 17%" " 33%" " 50%" " 67%" " 83%" "100%" "117%" "133%" "150%" "167%" "833%"

例子


#不保留小数位
percent(rescale(x, to=c(0,1), from=c(0,sum(x[1:4]))), accuracy = 1)

#保留两位小数
percent(rescale(x, to=c(0,1), from=c(0,sum(x[1:4]))), accuracy = .01)

中国老年人婚姻状况变化

library(reshape2)
library(tidyverse)
library(scales)

# 录入数据,并整理成数据框
marriage <- c("未婚","有配偶","丧偶","离婚")
y1990 <- c(127.31, 5787.47, 3703.58, 78.61)
y2000 <- c(212.17, 8616.39, 3885.58,84.26)
y2010 <- c(313.68, 12459.03, 4747.92, 138.08)


marriage2 <- data.frame(marriage, y1990, y2000, y2010)

marriage3 <- melt(marriage2, id.vars="marriage", variable.name="year", value.name="population")

marriage3$marriage <- factor(marriage3$marriage, levels= c("未婚","有配偶","丧偶","离婚"), c("未婚","有配偶","丧偶","离婚"))

marriage3$year <- str_replace(marriage3$year,"y","")



#根据人数,计算比例
y1990p <- percent(rescale(y1990, to =c(0,1), from=c(0,sum(y1990))),accuracy=.01, suffix = "")
y2000p <- percent(rescale(y2000, to =c(0,1), from=c(0,sum(y2000))),accuracy=.01, suffix = "")
y2010p <- percent(rescale(y2010, to =c(0,1), from=c(0,sum(y2010))),accuracy=.01, suffix = "")

marriage_P <- data.frame(marriage, y1990p, y2000p, y2010p)
marriage_P2 <- melt(marriage_P, id.vars="marriage", variable.name = "year", value.name = "percent")

marriage_P2$marriage <- factor(marriage_P2$marriage, levels= c("未婚","有配偶","丧偶","离婚"), c("未婚","有配偶","丧偶","离婚"))

#删除year值中的"y"和“p",只提取年份。
marriage_P2$year <- str_sub(marriage_P2$year, 2,5)

# 不知道为什么,如果直接把marriage_P2整个表合并进来,不会改变原变量的数据类型。但是如果只合并marriage_P2$percent,会改变percent变量的数据类型,变成因子型。
marriage4 <- cbind(marriage3, marriage_P2$percent)

names(marriage4)[4] <- "percent"

#因子型 转数值型,不能直接转,一定要先转成字符型,再转成数值型。

marriage4$percent <- as.numeric(as.character(marriage4$percent))

library(ggplot2)

ggplot(marriage4, aes(x=year, y=percent, group=marriage) ) + 
  geom_col(aes(fill=marriage), position="dodge") + 
  geom_text(aes(label=percent, y= percent+0.5), position = position_dodge(width = 0.9), vjust=0) + 
  labs(x=NULL, y=NULL, fill="婚姻类型", title="比例变化图") +
  theme(legend.position = c(0.8, 0.8))

ggplot(marriage4, aes(x=year, y=population, group=marriage)) + 
  geom_line(aes(colour=marriage), size=2) +
  geom_point(aes(shape=marriage),size=2) + 
  facet_wrap(.~marriage, scales="free") + 
  labs(x=NULL, y="人口数(万人)", title="人口变化图") + 
  theme(legend.position = "none")

Rplot04.png Rplot021.png

拼图

拼图包常用有三个:

参见:


library(cowplot)

p1<- ggplot(marriage4, aes(x=year, y=percent, group=marriage) ) + 
     geom_col(aes(fill=marriage), position="dodge") + 
     geom_text(aes(label=percent, y= percent+0.5), position = position_dodge(width = 0.9), vjust=0) + 
     labs(x=NULL, y="比例(%)", fill="婚姻类型") + 
     theme(legend.position = c(0.92, 0.85), legend.background = element_blank())

p2 <- ggplot(marriage4, aes(x=year, y=population, group=marriage)) + 
  geom_line(aes(colour=marriage), size=2) +
  geom_point(aes(shape=marriage),size=2) + 
  facet_wrap(.~marriage, scales="free") + 
  labs(x=NULL, y="人口数(万人)") + 
  theme(legend.position = "none")

ggdraw() + 
  draw_plot(p1, 0,0.1,0.5,0.85) + 
  draw_plot(p2, 0.5,0.1,0.5,0.85) + 
  draw_plot_label(c("比例图","人口图"),x=c(0,0.5), y=c(1,1)) +
  draw_plot_label("数据来源:中国人口普查 制图:李亮", x=0.63, y=0.1, size=8)

Rplot06.png

程序改进

利用通道分组计算新值。


marriage <- c("未婚","有配偶","丧偶","离婚")
y1990 <- c(127.31, 5787.47, 3703.58, 78.61)
y2000 <- c(212.17, 8616.39, 3885.58,84.26)
y2010 <- c(313.68, 12459.03, 4747.92, 138.08)

marriage2 <- data.frame(marriage, y1990, y2000, y2010)
marriage3 <- melt(marriage2, id.vars="marriage", variable.name="year", value.name="population")
marriage3$marriage <- factor(marriage3$marriage, levels= c("未婚","有配偶","丧偶","离婚"), c("未婚","有配偶","丧偶","离婚"))
marriage3$year <- str_replace(marriage3$year,"y","")

# 按year分组,计算各婚姻类别人口占某一year组人口的百分比。
marriage3 <- marriage3 %>%
 group_by(year) %>%
 mutate(percent= percent(rescale(population, to= c(0,1), from=c(0,sum(population))), accuracy=0.01, suffix=""))

marriage3

合并数据框时应注意数据类型

y1990p <- percent(rescale(y1990, to =c(0,1), from=c(0,sum(y1990))),accuracy=.01, suffix = "")
y2000p <- percent(rescale(y2000, to =c(0,1), from=c(0,sum(y2000))),accuracy=.01, suffix = "")
y2010p <- percent(rescale(y2010, to =c(0,1), from=c(0,sum(y2010))),accuracy=.01, suffix = "")

# 注意percent转化出来的是字符型列表
# 注意字符型列表转成数据框时,默认会变成因子,给后面数据处理带来麻烦。因此要加参数stringsAsFactors=FALSE

marriage_P <- data.frame(marriage, y1990p, y2000p, y2010p, stringsAsFactors=FALSE)
marriage_P2 <- melt(marriage_P, id.vars="marriage", variable.name = "year", value.name = "percent")
marriage_P2 <- as_tibble(marriage_P2)
marriage_P2
# 注意melt()函数在数据框转置时measure.vars变成的新变量是因子型,如本例中的year


# 使用tidyr包中的gather()函数, 默认factor_key = FALSE, 即Key值被存为字符型。如果TRUE,则存为因子型。
marriage_P <- data.frame(marriage, y1990p, y2000p, y2010p, stringsAsFactors=FALSE)
marriage_P2 <- gather(marriage_P, key = "year", value = "percent", - marriage)
marriage_P2 <- as_tibble(marriage_P2)
marriage_P2

上一篇 下一篇

猜你喜欢

热点阅读