MapReduce编程之Partitioner
2020-07-22 本文已影响0人
神豪VS勇士赢
Partitioner存在的意义
image.pngPartitioner 处理示意图
我们可以指定 Reduce 处理的数据 按照一定的 规则或者方式 进行分组
image.png
验证 Partitioner的测试数据格式如下:
我们想要实现的就是相同类型的手机放入到一个Reduce里面执行输出 。
image.png
修改代码如下:
加入了 Partitioner
以及修改了 Map 以及Driver 部分代码
运行 发现 输出四个文件 并且每个文件有不同类型的类型的计算
package com.zyh.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* 使用MapReduce开发WordCount用用程序
* 相比 WordCountApp3 增加了 Partition
*/
public class WordCountApp4 {
/**
* 读取输入文件
* <p>
* Mapper
* LongWritable 偏移量
*/
public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
LongWritable one = new LongWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 接收到的 每一行数据
String line = value.toString();
// 按照制定分隔符分开
String[] words = line.split(" ");
context.write(new Text(words[0]), new LongWritable(Long.parseLong(words[1])));
}
}
/**
* 归并操作
*/
public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
for (LongWritable value : values) {
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
}
public static class MyPartitioner extends Partitioner<Text, LongWritable> {
@Override
public int getPartition(Text text, LongWritable longWritable, int numPartitions) {
if (text.toString().equals("xiaomi")) {
return 0;
}
if (text.toString().equals("huawei")) {
return 1;
}
if (text.toString().equals("iphone7")) {
return 2;
}
return 3;
}
}
/**
* 封装了所有的mapreduce的 作业cd
* @param args
*/
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建configuration
Configuration configuration = new Configuration();
//校验是否已存在 输出的目录文件 存在即删除
Path path = new Path(args[1]);
FileSystem fileSystem = FileSystem.get(configuration);
if (fileSystem.exists(path)) {
fileSystem.delete(path, true);
System.out.println("output file delete success ");
}
Job job = Job.getInstance(configuration, "wordCount");
//设置 job的处理类
job.setJarByClass(WordCountApp4.class);
//设置作业处理的输入路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
//设置map相关的参数
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//设置 reduce 相关参数
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
//设置 job的 partition
job.setPartitionerClass(MyPartitioner.class);
// 设置 4个 reducer 每个分区 一个
job.setNumReduceTasks(4);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}