曲线相似度Fréchet distance
2017-08-18 本文已影响292人
我念东风终不负
# -*- coding: utf-8 -*-
"""
Fréchet distance
"""
import math
import numpy as np
# Euclidean distance.
def euc_dist(pt1,pt2):
return math.sqrt((pt2[0]-pt1[0])*(pt2[0]-pt1[0])+(pt2[1]-pt1[1])*(pt2[1]-pt1[1]))
def _c(ca,i,j,P,Q):
if ca[i,j] > -1:
return ca[i,j]
elif i == 0 and j == 0:
ca[i,j] = euc_dist(P[0],Q[0])
elif i > 0 and j == 0:
ca[i,j] = max(_c(ca,i-1,0,P,Q),euc_dist(P[i],Q[0]))
elif i == 0 and j > 0:
ca[i,j] = max(_c(ca,0,j-1,P,Q),euc_dist(P[0],Q[j]))
elif i > 0 and j > 0:
ca[i,j] = max(min(_c(ca,i-1,j,P,Q),_c(ca,i-1,j-1,P,Q),_c(ca,i,j-1,P,Q)),euc_dist(P[i],Q[j]))
else:
ca[i,j] = float("inf")
return ca[i,j]
"""
Computes the discrete frechet distance between two polygonal lines
Algorithm: http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf
P and Q are arrays of 2-element arrays (points)
"""
def frechetDist(P,Q):
ca = np.ones((len(P),len(Q)))
ca = np.multiply(ca,-1)
return _c(ca,len(P)-1,len(Q)-1,P,Q)