java从0到架构师

49_深入聚合数据分析_cardinality算法之优化内存开销

2020-02-28  本文已影响0人  小山居

49_深入聚合数据分析_cardinality算法之优化内存开销以及HLL算法

cardinality,count(distinct),5%的错误率,性能在100ms左右

1、precision_threshold优化准确率和内存开销

GET /tvs/sales/_search
{
    "size" : 0,
    "aggs" : {
        "distinct_brand" : {
            "cardinality" : {
              "field" : "brand",
              "precision_threshold" : 100 
            }
        }
    }
}

brand去重,如果brand的unique value,在100个以内,小米,长虹,三星,TCL,HTL。。。

在多少个unique value以内,cardinality,几乎保证100%准确
cardinality算法,会占用precision_threshold * 8 byte 内存消耗,100 * 8 = 800个字节
占用内存很小。。。而且unique value如果的确在值以内,那么可以确保100%准确
100,数百万的unique value,错误率在5%以内

precision_threshold,值设置的越大,占用内存越大,1000 * 8 = 8000 / 1000 = 8KB,可以确保更多unique value的场景下,100%的准确

field,去重,count,这时候,unique value,10000,precision_threshold=10000,10000 * 8 = 80000个byte,80KB

2、HyperLogLog++ (HLL)算法性能优化

cardinality底层算法:HLL算法,HLL算法的性能

会对所有的uqniue value取hash值,通过hash值近似去求distcint count,误差

默认情况下,发送一个cardinality请求的时候,会动态地对所有的field value,取hash值; 将取hash值的操作,前移到建立索引的时候

PUT /tvs/
{
  "mappings": {
    "sales": {
      "properties": {
        "brand": {
          "type": "text",
          "fields": {
            "hash": {
              "type": "murmur3" 
            }
          }
        }
      }
    }
  }
}

将取hash值的操作,前移到建立索引的时候,.再来进行cardinality聚合查询的时候,brand.hash 节省时间.

GET /tvs/sales/_search
{
    "size" : 0,
    "aggs" : {
        "distinct_brand" : {
            "cardinality" : {
              "field" : "brand.hash",
              "precision_threshold" : 100 
            }
        }
    }
}
上一篇下一篇

猜你喜欢

热点阅读