LeetCode 周赛上分之旅 #45 精妙的 O(lgn) 扫

2023-09-17  本文已影响0人  彭旭锐

LeetCode 双周赛 113 概览

T1. 使数组成为递增数组的最少右移次数(Easy)

T2. 删除数对后的最小数组长度(Medium)

T3. 统计距离为 k 的点对(Medium)

T4. 可以到达每一个节点的最少边反转次数(Hard)


T1. 使数组成为递增数组的最少右移次数(Easy)

https://leetcode.cn/problems/minimum-right-shifts-to-sort-the-array/description/

题解一(暴力枚举)

简单模拟题。

由于题目数据量非常小,可以把数组复制一份拼接在尾部,再枚举从位置 i 开始长为 n 的连续循环子数组是否连续,是则返回 (n - i)\%n

class Solution {
    fun minimumRightShifts(nums: MutableList<Int>): Int {
        val n = nums.size
        nums.addAll(nums)
        for (i in 0 until n) {
            if ((i + 1 ..< i + n).all { nums[it] > nums[it - 1]}) return (n - i) % n
        }
        return -1
    }
}
class Solution:
    def minimumRightShifts(self, nums: List[int]) -> int:
        n = len(nums)
        nums += nums
        for i in range(0, n):
            if all(nums[j] > nums[j - 1] for j in range(i + 1, i + n)):
                return (n - i) % n
        return -1

复杂度分析:

题解二(线性遍历)

更优的写法,我们找到第一个逆序位置,再检查该位置后续位置是否全部为升序,且满足 nums[n - 1] < nums[0]

class Solution {
    fun minimumRightShifts(nums: List<Int>): Int {
        val n = nums.size
        for (i in 1 until n) { 
            // 第一段
            if (nums[i] >= nums[i - 1]) continue
            // 第二段
            if (nums[n - 1] > nums[0]) return -1
            for (j in i until n - 1) { 
                if (nums[j] > nums[j + 1]) return -1
            }
            return n - i
        }
        return 0
    }
}

复杂度分析:


T2. 删除数对后的最小数组长度(Medium)

https://leetcode.cn/problems/minimum-array-length-after-pair-removals/

题解一(二分答案)

问题存在单调性:

那么,原问题相当于求解满足目标的最大操作次数。

现在需要考虑的问题是:如何验证操作次数 k 是否可以完成?

一些错误的思路:

开始转换思路:

能否将数组拆分为两部分,作为 nums[i] 的分为一组,作为 nums[j] 的分为一组。 例如,在用例 [1 2 | 3 6][1 2 | 4 6][2 3 | 4 8] 中,将数组的前部分作为 nums[i] 而后半部分作为 nums[j] 时,可以得到最优解,至此发现贪心规律。

设数组的长度为 n,最大匹配对数为 k

总结:如果存在 k 对匹配,那么一定可以让最小的 k 个数和最大的 k 个数匹配。

基于以上分析,可以写出二分答案:

class Solution {
    fun minLengthAfterRemovals(nums: List<Int>): Int {
        val n = nums.size
        var left = 0
        var right = n / 2
        while (left < right) {
            val k = (left + right + 1) ushr 1
            if ((0 ..< k).all { nums[it] < nums[n - k + it] }) {
                left = k
            } else {
                right = k - 1
            }
        }
        return n - 2 * left
    }
}

复杂度分析:

题解二(双指针)

基于题解一的分析,以及删除操作的上界 n / 2,我们可以仅使用数组的后半部分与前半部分作比较,具体算法:

class Solution {
    fun minLengthAfterRemovals(nums: List<Int>): Int {
        val n = nums.size
        var i = 0
        for (j in (n + 1) / 2 until n) {
            if (nums[i] < nums[j]) i++
        }
        return n - 2 * i
    }
}

复杂度分析:

题解三(众数)

由于题目的操作只要满足 nums[i] < nums[j],即两个数不相等即可,那么问题的解最终仅取决于数组中的众数的出现次数:

最后,由于数组是非递减的,因此可以在 O(1) 空间求出众数的出现次数:

class Solution {
    fun minLengthAfterRemovals(nums: List<Int>): Int {
        val n = nums.size
        var s = 1
        var cur = 1
        for (i in 1 until n) {
            if (nums[i] == nums[i - 1]) {
                s = max(s, ++ cur)
            } else {
                cur = 1
            }
        }
        if (s <= n - s) {
            return n % 2
        } else {
            return s - (n - s)
        }
    }
}

复杂度分析:

题解四(找规律 + 二分查找)

继续挖掘数据规律:

s <= n - s 等价于众数的出现次数超过数组长度的一半,由于数组是有序的,那么一定有数组的中间位置就是众数,我们可以用二分查找找出众数在数组中出现位置的边界,从而计算出众数的出现次数。

由此,我们甚至不需要线性扫描都能计算出众数以及众数的出现次数,Nice!

当然,最后计算出来的出现次数有可能没有超过数组长度的一半。

class Solution {
    fun minLengthAfterRemovals(nums: List<Int>): Int {
        val n = nums.size
        val x = nums[n / 2]
        val s = lowerBound(nums, x + 1) - lowerBound(nums, x)
        return max(2 * s - n, n % 2)
    }

    fun lowerBound(nums: List<Int>, target: Int): Int {
        var left = 0
        var right = nums.size - 1
        while (left < right) {
            val mid = (left + right + 1) ushr 1
            if (nums[mid] >= target) {
                right = mid - 1
            } else {
                left = mid
            }
        }
        return if (nums[left] == target) left else left + 1
    }
}

复杂度分析:

相似题目:


T3. 统计距离为 k 的点对(Medium)

https://leetcode.cn/problems/count-pairs-of-points-with-distance-k/

题解(散列表)

容易想到两数之和的问题模板,唯一需要思考的问题是如何设计散列表的存取方式:

对于满足 (x1\ xor\ x2) + (y1\ xor\ y2) == k 的方案,我们抽象为两部分 i + j = k,其中,i = (x1\ xor\ x2) 的取值范围为 [0, k],而 j = k - i,即总共有 k + 1 种方案。本题的 k 数据范围很小,所以我们可以写出时间复杂度 O(nk) 的算法。

class Solution {
    fun countPairs(coordinates: List<List<Int>>, k: Int): Int {
        var ret = 0
        // <x, <y, cnt>>
        val map = HashMap<Int, HashMap<Int, Int>>()
        for ((x2, y2) in coordinates) {
            // 记录方案
            for (i in 0 .. k) {
                if (!map.containsKey(i xor x2)) continue
                ret += map[i xor x2]!!.getOrDefault((k - i) xor y2, 0)
            }
            // 累计次数
            map.getOrPut(x2) { HashMap<Int, Int>() }[y2] = map[x2]!!.getOrDefault(y2, 0) + 1
        }
        return ret
    }
}

Python 计数器支持复合数据类型的建,可以写出非常简洁的代码:

class Solution:
    def countPairs(self, coordinates: List[List[int]], k: int) -> int:
        c = Counter()
        ret = 0
        for x2, y2 in coordinates:
            # 记录方案
            for i in range(k + 1):
                ret += c[(i ^ x2, (k - i) ^ y2)]
            # 累计次数
            c[(x2, y2)] += 1
        return ret

复杂度分析:


T4. 可以到达每一个节点的最少边反转次数(Hard)

https://leetcode.cn/problems/minimum-edge-reversals-so-every-node-is-reachable/

问题分析

初步分析:

思考实现:

思考优化:

具体实现:

题解(换根 DP)

class Solution {
    fun minEdgeReversals(n: Int, edges: Array<IntArray>): IntArray {
        val dp = IntArray(n)
        val graph = Array(n) { LinkedList<IntArray>() }
        // 建图
        for ((from, to) in edges) {
            graph[from].add(intArrayOf(to, 1))
            graph[to].add(intArrayOf(from, -1))
        }

        // 以 0 为根节点
        fun dfs(i: Int, fa: Int) {
            for ((to, gain) in graph[i]) {
                if (to == fa) continue
                if (gain == -1) dp[0] ++
                dfs(to, i)
            }
        }

        fun dp(i: Int, fa: Int) {
            for ((to, gain) in graph[i]) {
                if (to == fa) continue
                // 状态转移
                dp[to] = dp[i] + gain
                dp(to, i)
            }
        }

        dfs(0, -1)
        dp(0, -1)
        
        return dp
    }
}

复杂度分析:


推荐阅读

LeetCode 上分之旅系列往期回顾:

上一篇 下一篇

猜你喜欢

热点阅读