连续子数组的最大和

2019-09-28  本文已影响0人  BluthLeee

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

分析

使用动态规划

F(i):以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变
F(i)=max(F(i-1)+array[i] , array[i])
res:所有子数组的和的最大值
res=max(res,F(i))

如数组[6, -3, -2, 7, -15, 1, 2, 2]
初始状态:

代码

public class Solution {
    public int FindGreatestSumOfSubArray(int[] array) {
        int max=array[0];
        int re = array[0];
        for(int i=1;i<array.length;i++){
            max=Math.max(max+array[i],array[i]);
            re=Math.max(re,max);
        }
        return re;
    }
}

总结

dp基本问题,动态变化真牛皮(破音~)

上一篇 下一篇

猜你喜欢

热点阅读