scRNA-seq单细胞单细胞转录组视...

单细胞转录组学习笔记-5

2019-06-18  本文已影响46人  刘小泽

刘小泽写于19.6.17
笔记目的:根据生信技能树的单细胞转录组课程探索smart-seq2技术相关的分析技术
课程链接在:http://jm.grazy.cn/index/mulitcourse/detail.html?cid=53
第二单元第三讲:得到表达矩阵后应该再怎么操作

过滤后的操作

上次得到的dat表达矩阵过滤掉低表达基因后,剩下12198个基因

看看其中的spike-in情况

> grep('ERCC',rownames(dat))
 [1] 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150
[13] 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162
[25] 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174
[37] 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186
[49] 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198

关于ERCC可以看这篇文章:Power Analysis of Single Cell RNA-Sequencing Experiments http://biorxiv.org/content/early/2016/09/08/073692

另外还有一篇文献讲ERCC的评价:Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design https://bmcbiotechnol.biomedcentral.com/articles/10.1186/s12896-016-0281-x

以及这一篇:究竟什么是spike-in,怎么用它?The Overlooked Fact: Fundamental Need for Spike-In Control for Virtually All Genome-Wide Analyses https://mcb.asm.org/content/36/5/662

去除细胞文库大小差异

每个细胞测得数据大小不同,这样是没办法看高表达还是低表达的,必须先保证基数一样才能比较,cpm(counts per million)这个算法就是做这个事情的。

cpm是归一化的一种方法,代表每百万碱基中每个转录本的count值

注意:这个算法只是校正文库差异,而没有校正基因长度差异。要注意我们分析的目的就是:比较一个基因在不同细胞的表达量差异,而不是考虑一个样本中不同两个基因的差异,因为"没有两片相同的树叶”这个差异是正常的。但是同一个基因由于某种条件发生了改变,背后的生物学意义是更值得探索的。

用起来很简单,有现成的函数cpm() ,然后我们再用log将数据降个维度,但保持原有数据形状不变:log2(edgeR::cpm(dat)+1)

意思就是:cpm需要除以测序总reads数,而这个值作为分母会导致结果千差万别,有的特别大有的很小。为了后面可视化不受极值的影响,用log转换一下可以将数值变小,并且原来大的数值最后还是大,并不改变这个现实

那么具体这个函数做了什么事,才是真正需要了解的:

# 先看看前4行4列的数据
>   dat[1:4,1:4] 
              SS2_15_0048_A3 SS2_15_0048_A6 SS2_15_0048_A5 SS2_15_0048_A4
0610007P14Rik              0              0             18             11
0610009B22Rik              0              0              0              0
0610009L18Rik              0              0              0              0
0610009O20Rik              0              0              1              1
# 比如先计算一下第三个样本的总测序量
> sum(dat[,3])
[1] 206831 #结果是0.2M
# 那么对于第三个样本SS2_15_0048_A5的第一个基因0610007P14Rik(结果是18)
# 计算它的cpm值:count值*1000000/总测序reads
> 18*1000000/206831
[1] 87.02757
# 和标准公式比较看看,结果完全相同
> edgeR::cpm(dat[,3])[1]
[1] 87.02757
# 因此最后就是
dat=log2(edgeR::cpm(dat)+1) 

归一化后聚类

第一步:理解dist函数

首先理解,它是计算距离用的,正如函数名称所描述的一样:distance

# 先构建一个测试矩阵
x=1:5
y=2*x
z=52:56
tmp=data.frame(x,y,z)
> tmp
  x  y  z
1 1  2 52
2 2  4 53
3 3  6 54
4 4  8 55
5 5 10 56
# 可以看到,x和y是有一定相关性的,而z和它们很难扯上关系
# 然后尝试计算x、y、z之间的距离,来验证我们的猜想
>   dist(tmp)
         1        2        3        4
2 2.449490                           
3 4.898979 2.449490                  
4 7.348469 4.898979 2.449490         
5 9.797959 7.348469 4.898979 2.449490
# 好像得到的不是我们想要的。我们想要的是x、y、z距离结果,而计算给出的是以"行"为单位的结果
# 因此,猜测dist应该是以行为输入。因此修改一下tmp,让x、y、z为行,其实也就是转置一下,转置函数用t()
>   dist(t(tmp))
           x          y
y   7.416198           
z 114.039467 107.377838

同样的,我们这里的dat数据,是要计算细胞间的距离,也就是列与列之间的距离,使用dist(t(dat)) 计算。数据中有768个细胞,也就是要计算768个细胞核768个细胞之间的距离,计算量还是很大的。

关于dist计算距离的方法:主要有6种:”欧式euclidean”, “切比雪夫距离maximum”, “绝对值距离manhattan”, “Lance距离canberra”, “定型变量距离binary” or “明可夫斯基距离minkowski(使用时要指定p值)”。

默认使用第一种欧氏距离,它计算的是:几何空间中两点之间的距离。思想类似于勾股定理求第三条斜边的长度=》平方和再开方。

第二步:理解hclust函数

它是进行层次聚类(系谱聚类)的方法

关于hclust聚类的方法:”离差平方和法ward”, “最短距离法single”, “最长距离法complete”,”类平均法average”, “相似法mcquitty”, “中间距离法median” or “重心法centroid”。默认使用complete算法

hc=hclust(dist(t(dat))) 
# 如果要进行可视化
plot(hc,labels = FALSE) #labels这个选项的意思是不显示各个样本名称,因为样本太多,会让图看起来很乱
可以看到大体分了4群

另外hclust函数还有一个亲戚:cutree,顾名思义,就是对聚类树进行修剪。我们知道聚类结果是分群的,cutree就是指定输出哪些群(结果是从大群到小群排列)

# 例如要看看分的4大群
clus = cutree(hc, 4)
group_list= as.factor(clus) #得到的这个因子型变量group_list中样本顺序和输入的顺序一致,并且属于第几类都有记录
>   table(group_list) 
group_list
  1   2   3   4 
312 300 121  35 

提取批次信息

在上一步操作结果中,可以看到,样本名都是有规律的,例如:

> head(colnames(dat))
[1] "SS2_15_0048_A3" "SS2_15_0048_A6" "SS2_15_0048_A5" "SS2_15_0048_A4"
[5] "SS2_15_0048_A1" "SS2_15_0048_A2"

其中SS2_15都是一样的,Pxx也不需要管,重要的是中间的0048、0049,表示两个384孔板编号

那么如何提取?

使用strsplit函数,strsplit(x, split, fixed = FALSE) ,需要注意两点:

# 方法一:纯base包(思路就是:将拆分得到的list变成数据框)
options(stringsAsFactors = F)
plate=do.call(rbind.data.frame,strsplit(colnames(dat),"_"))[,3] 
# 方法二:stringr包
library(stringr)
plate=str_split(colnames(dat),'_',simplify = T)[,3] 

最后新建细胞的属性信息

主要使用cutree剪下来的层次聚类信息、细胞板批次信息、每个样本的基因表达信息

前两个已经具备,下面进行第三个:每个样本的基因表达信息

# 还记得之前对基因进行过滤时,我们是对行进行操作
apply(a,1, function(x) sum(x>1) > floor(ncol(a)/50))
# 这里检测每个样本中有多少基因是表达的,count值以1为标准,rpkm值可以用0为标准
n_g = apply(a,2,function(x) sum(x>1))
# 对于单细胞转录组,一般会有超过半数的基因不会表达(这个在下面构建完数据框还可以再看一下) 

可以构建数据框了:

meta=data.frame(g=group_list,plate=plate,n_g=n_g)
# 然后再添加一列,目前用不到,后续会介绍
meta$all='all'

可以看到细胞中检测到表达的基因最多有7372个,最少才几十个,而我们总共有12000多个基因

上一篇下一篇

猜你喜欢

热点阅读