Block 原理探究代码篇
2020-04-29 本文已影响0人
NinthDay
Block 原理探究代码篇
demo 我已经放在了 github bytedance-alibaba-interview,注意下 ARC 和 MRC 内存管理可能会得出不同的结论。
首先明确 Block 底层数据结构,之后所有的 demos 都基于此来学习知识点:
typedef NS_OPTIONS(int,PTBlockFlags) {
PTBlockFlagsHasCopyDisposeHelpers = (1 << 25),
PTBlockFlagsHasSignature = (1 << 30)
};
typedef struct PTBlock {
__unused Class isa;
PTBlockFlags flags;
__unused int reserved;
void (__unused *invoke)(struct PTBlock *block, ...);
struct {
unsigned long int reserved;
unsigned long int size;
// requires PTBlockFlagsHasCopyDisposeHelpers
void (*copy)(void *dst, const void *src);
void (*dispose)(const void *);
// requires PTBlockFlagsHasSignature
const char *signature;
const char *layout;
} *descriptor;
// imported variables
// Block 捕获的实例变量都在次
} *PTBlockRef;
typedef struct PTBlock_byref {
void *isa;
struct PTBlock_byref *forwarding;
volatile int flags; // contains ref count
unsigned int size;
// 下面两个函数指针是不定的 要根据flags来
// void (*byref_keep)(struct PTBlock_byref *dst, struct PTBlock_byref *src);
// void (*byref_destroy)(struct PTBlock_byref *);
// long shared[0];
} *PTBlock_byref_Ref;
1. 调用 block
void (^blk)(void) = ^{
NSLog(@"hello world");
};
PTBlockRef block = (__bridge PTBlockRef)blk;
block->invoke(block);
2. block 函数签名
void (^blk)(int, short, NSString *) = ^(int a, short b, NSString *str){
NSLog(@"a:%d b:%d str:%@",a,b,str);
};
PTBlockRef block = (__bridge PTBlockRef)blk;
if (block->flags & PTBlockFlagsHasSignature) {
void *desc = block->descriptor;
desc += 2 * sizeof(unsigned long int);
if (block->flags & PTBlockFlagsHasCopyDisposeHelpers) {
desc += 2 * sizeof(void *);
}
const char *signature = (*(const char **)desc);
NSMethodSignature *sig = [NSMethodSignature signatureWithObjCTypes:signature];
NSLog(@"方法 signature:%s",signature);
}
// 打印内容如下:
// v24 @?0 i8 s12 @"NSString"16
// 其中 ? 是 An unknown type (among other things, this code is used for function pointers)
3. block 捕获栈上局部变量
捕获的变量都会按照顺序放置在 PTBlock
结构体后面,如此看来就是个变长结构体。
也就是说我们可以通过如下方式知道 block 捕获了哪些外部变量(全局变量除外)。
int a = 0x11223344;
int b = 0x55667788;
NSString *str = @"pmst";
void (^blk)(void) = ^{
NSLog(@"a:%d b:%d str:%@",a,b, str);
};
PTBlockRef block = (__bridge PTBlockRef)blk;
void *pt = (void *)block + sizeof(struct PTBlock);
long long *ppt = pt;
NSString *str_ref = (__bridge id)((void *)(*ppt));
int *a_ref = pt + sizeof(NSString *);
int *b_ref = pt + sizeof(NSString *) + sizeof(int);
NSLog(@"a:0x%x b:0x%x str:%@",*a_ref, *b_ref, str_ref);
TODO:
NSString
layout 布局为何在第一位?
4. __block
变量(栈上)
__block int a = 0x99887766;
__unsafe_unretained void (^blk)(void) = ^{
NSLog(@"__block a :%d",a);
};
NSLog(@"Block 类型 %@",[blk class]);
PTBlockRef block = (__bridge PTBlockRef)blk;
void *pt = (void *)block + sizeof(struct PTBlock);
long long *ppt = pt;
void *ref = (PTBlock_byref_Ref)(*ppt);
void *shared = ref + sizeof(struct PTBlock_byref);
int *a_ref = (int *)shared;
NSLog(@"a 指针:%p block a 指针:%p block a value:0x%x",&a, a_ref,*a_ref);
NSLog(@"PTBlock_byref 指针:%p",ref);
NSLog(@"PTBlock_byref forwarding 指针:%p",((PTBlock_byref_Ref)ref)->forwarding);
/*
输出如下:
Block 类型 __NSStackBlock__
a 指针:0x7ffeefbff528 block a 指针:0x7ffeefbff528 block a value:0x99887766
PTBlock_byref 指针:0x7ffeefbff510
PTBlock_byref forwarding 指针:0x7ffeefbff510
*/
可以看到 __block int a
已经变成了另外一个数据结构了,打印地址符合预期,此刻 block 以及其他的变量结构体都在栈上。
5. __block
变量,[block copy] 后的内存变化
__block int a = 0x99887766;
__unsafe_unretained void (^blk)(NSString *) = ^(NSString *flag){
NSLog(@"[%@] 中 a 地址:%p",flag, &a);
};
NSLog(@"blk 类型 %@",[blk class]);
blk(@"origin block");
void (^copyblk)(NSString *) = [blk copy];
copyblk(@"copy block");
blk(@"origin block 二次调用");
/**
输出如下:
blk 类型 __NSStackBlock__
[origin block] 中 a 地址:0x7ffeefbff528
copyblk 类型 __NSMallocBlock__
[copy block] 中 a 地址:0x102212468
[origin block 二次调用] 中 a 地址:0x102212468
*/
很明显对 blk 进行 copy 操作后,copyblk 已经“移驾”到堆上,随着拷贝的还有 __block
修饰的a变量(PTBlock_byref_Ref
类型);
6. __block
变量中 forwarding 指针
__block int a = 0x99887766;
__unsafe_unretained void (^blk)(NSString *,id) = ^(NSString *flag, id bblk){
NSLog(@"[%@] a address:%p",flag, &a); // a 取值都是 ->forwarding->a 方式
PTBlockRef block = (__bridge PTBlockRef)bblk;
void *pt = (void *)block + sizeof(struct PTBlock);
long long *ppt = pt;
void *ref = (PTBlock_byref_Ref)(*ppt);
NSLog(@"[%@] PTBlock_byref_Ref 指针:%p",flag,ref);
NSLog(@"[%@] PTBlock_byref_Ref forwarding 指针:%p",flag,((PTBlock_byref_Ref)ref)->forwarding);
void *shared = ref + sizeof(struct PTBlock_byref);
int *a_ref = (int *)shared;
NSLog(@"[%@] a value : 0x%x a adress:%p", flag, *a_ref, a_ref);
};
NSLog(@"blk 类型 %@",[blk class]);
blk(@"origin block", blk);
void (^copyblk)(NSString *,id) = [blk copy];
NSLog(@"copyblk 类型 %@",[copyblk class]);
copyblk(@"copy block",copyblk);
blk(@"origin block after copy", blk);
/**
MRC 模式下输出:
blk 类型 __NSStackBlock__
[origin block] a address:0x7ffeefbff528
[origin block] PTBlock_byref_Ref 指针:0x7ffeefbff510
[origin block] PTBlock_byref_Ref forwarding 指针:0x7ffeefbff510
[origin block] a value : 0x99887766 a adress:0x7ffeefbff528
copyblk 类型 __NSMallocBlock__
[copy block] a address:0x1032041d8
[copy block] PTBlock_byref_Ref 指针:0x1032041c0
[copy block] PTBlock_byref_Ref forwarding 指针:0x1032041c0
[copy block] a value : 0x99887766 a adress:0x1032041d8
[origin block after copy] a address:0x1032041d8
[origin block after copy] PTBlock_byref_Ref 指针:0x7ffeefbff510
[origin block after copy] PTBlock_byref_Ref forwarding 指针:0x1032041c0
[origin block after copy] a value : 0x99887766 a adress:0x7ffeefbff528
ARC 模式下输出(这个稍有出路):
blk 类型 __NSStackBlock__
[origin block] a address:0x100604cc8
[origin block] PTBlock_byref_Ref 指针:0x100604cb0
[origin block] PTBlock_byref_Ref forwarding 指针:0x100604cb0
[origin block] a value : 0x99887766 a adress:0x100604cc8
copyblk 类型 __NSMallocBlock__
[copy block] a address:0x100604cc8
[copy block] PTBlock_byref_Ref 指针:0x100604cb0
[copy block] PTBlock_byref_Ref forwarding 指针:0x100604cb0
[copy block] a value : 0x99887766 a adress:0x100604cc8
*/
这里可以看到 forwarding 指针确实指向了结构体本身,随着 copy 行为确实进行了一次栈->堆的赋值——block
和 __block
变量。
建议用 lldb 命令去看内存布局。
- Block Hook
TODO: