Swift 3.0 GCD的常用方法
Swift 3.0 GCD常用的方法
导语:
随着最近苹果推出
Swift 3.0
觉得不能把Swift丢下了,就赶在最近学了一下Swift, 然后把Swift 3.0
GCD 部分稍微的总结一下
为了方便我定义了几个属性
class ViewController:UIViewController{
/**队列*/
var myQueue:DispatchQueue?
var myQueueTimer:DispatchQueue?
var mnytimer:DispatchSourceTimer?
var myGroup:DispatchGroup?
var mySource:DispatchSource?
override fun viewDidLoad() {
super.viewDidLoad()
GCDTest1()
GCDTest8()
}
}```
####定义队列
//MARK: - 创建队列
//1.
myQueue = DispatchQueue(label: "第一条线程")
/*
-
parameter qos:DispatchQoS
线程的策略
case background //后台case utility //公共的 case `default` //默认的 case userInitiated //用户期望优先级(不要放太耗时的操作) case userInteractive //用户交互(跟主线程一样) case unspecified //不指定
*/
//2.
myQueue = DispatchQueue(label: "第二条线程", qos: .default, attributes: .concurrent, autoreleaseFrequency: .workItem, target: nil)
创建好的队列执行任务
myQueue?.sync(execute: {
print("执行同步任务")
})
myQueue?.async(execute: {
print("执行异步任务")
})
串行执行队列
myQueue?.async {
for _ in 0...10 {
print("aaaaaaa");
}
}
myQueue?.async {
for _ in 0...10 {
print("bbbbbbb");
}
}
```
接下来是GCD常用的用法
- 开线程异步执行完耗时代码返回主线程刷新UI
func GCDTest2() {
/**1. 开线程异步执行完耗时代码返回主线程刷新UI*/
DispatchQueue.global().async {
print("开一条全局队列异步执行任务")
DispatchQueue.main.async {
print("在主队列执行任务")
}
}
}
- 等待异步执行多个任务后, 再执行下一个任务
/**2. 等待异步执行多个任务后, 再执行下一个任务*/
func GCDTest3() {
myQueue?.async {//任务一
for _ in 0...10 {
print("......")
}
}
myQueue?.async {//任务二
for _ in 0...10 {
print("++++++");
}
}
// barrier 会等待上面执行完毕再执行下面的,会阻塞当前线程
// myQueue?.async(flags:.barrier ,execute: {//1.
// print("000000")
// })
myQueue?.async(group: nil, qos: .default, flags: .barrier, execute: {//2.
print("000000")
})
myQueue?.async {
print("111111")
}
/* 打印的结果
++++++
......
++++++
......
++++++
......
++++++
......
++++++
......
++++++
......
++++++
......
++++++
......
++++++
......
++++++
......
++++++
......
000000
111111
*/
}
延时提交任务
func GCDTest4() {
//主队列
DispatchQueue.main.asyncAfter(deadline: DispatchTime.now() + 10) {
print("延时提交的任务")
}
//指定队列
myQueue?.asyncAfter(deadline: DispatchTime.now() + 10, execute: {
print("延时提交的任务")
})
}
信号量:
func GCDTest5() {
//初始化信号量, 计数为三
let mySemaphore = DispatchSemaphore(value: 3)
for i in 0...10 {
print(i)
// let _ = mySemaphore.wait() //获取信号量,信号量减1,为0时候就等待,会阻碍当前线程
let _ = mySemaphore.wait(timeout: DispatchTime.now() + 2.0) //阻碍时等两秒信号量还是为0时将不再等待, 继续执行下面的代码
myQueue?.async {
for j in 0...4 {
print("有限资源\(j)")
sleep(UInt32(3.0))
}
print("-------------------")
mySemaphore.signal()
}
}
}
信号量的说明:
GCD 信号量控制并发 (dispatch_semaphore)
当我们在处理一系列线程的时候,当数量达到一定量,在以前我们可能会选择使用NSOperationQueue来处理并发控制,但如何在GCD中快速的控制并发呢?答案就是dispatch_semaphore。
信号量是一个整形值并且具有一个初始计数值,并且支持两个操作:信号通知和等待。当一个信号量被信号通知,其计数会被增加。当一个线程在一个信号量上等待时,线程会被阻塞(如果有必要的话),直至计数器大于零,然后线程会减少这个计数。
在GCD中有三个函数是semaphore的操作,分别是:
1、dispatch_semaphore_create 创建一个semaphore
2、dispatch_semaphore_signal 发送一个信号
3、dispatch_semaphore_wait 等待信号
下面我们逐一介绍三个函数:
(1)dispatch_semaphore_create的声明为:
dispatch_semaphore_t dispatch_semaphore_create(long value);
传入的参数为long,输出一个dispatch_semaphore_t类型且值为value的信号量。值得注意的是,这里的传入的参数value必须大于或等于0,否则dispatch_semaphore_create会返回NULL。
(2)dispatch_semaphore_signal的声明为:
long dispatch_semaphore_signal(dispatch_semaphore_t dsema)这个函数会使传入的信号量dsema的值加1;(至于返回值,待会儿再讲)
(3) dispatch_semaphore_wait的声明为:
long dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout);
这个函数会使传入的信号量dsema的值减1。这个函数的作用是这样的,如果dsema信号量的值大于0,该函数所处线程就继续执行下面的语句,并且将信号量的值减1;如果desema的值为0,那么这个函数就阻塞当前线程等待timeout(注意timeout的类型为dispatch_time_t,不能直接传入整形或float型数),如果等待的期间desema的值被dispatch_semaphore_signal函数加1了,且该函数(即dispatch_semaphore_wait)所处线程获得了信号量,那么就继续向下执行并将信号量减1。如果等待期间没有获取到信号量或者信号量的值一直为0,那么等到timeout时,其所处线程自动执行其后语句。
(4)dispatch_semaphore_signal的返回值为long类型,当返回值为0时表示当前并没有线程等待其处理的信号量,其处理的信号量的值加1即可。当返回值不为0时,表示其当前有(一个或多个)线程等待其处理的信号量,并且该函数唤醒了一个等待的线程(当线程有优先级时,唤醒优先级最高的线程;否则随机唤醒)。
dispatch_semaphore_wait的返回值也为long型。当其返回0时表示在timeout之前,该函数所处的线程被成功唤醒。当其返回不为0时,表示timeout发生。
(5)关于信号量,一般可以用停车来比喻。
停车场剩余4个车位,那么即使同时来了四辆车也能停的下。如果此时来了五辆车,那么就有一辆需要等待。信号量的值就相当于剩余车位的数目,dispatch_semaphore_wait函数就相当于来了一辆车,dispatch_semaphore_signal就相当于走了一辆车。停车位的剩余数目在初始化的时候就已经指明了(dispatch_semaphore_create(long value)),调用一次dispatch_semaphore_signal,剩余的车位就增加一个;调用一次dispatch_semaphore_wait剩余车位就减少一个;当剩余车位为0时,再来车(即调用dispatch_semaphore_wait)就只能等待。有可能同时有几辆车等待一个停车位。有些车主没有耐心,给自己设定了一段等待时间,这段时间内等不到停车位就走了,如果等到了就开进去停车。而有些车主就像把车停在这,所以就一直等下去。
重复提交任务(定时器)
func GCDTest6() {
// 秒 毫秒 微秒 纳秒
// 1 seconds = 1000 milliseconds = 1000,000 microseconds = 1000,000,000 nanoseconds
myTimer = DispatchSource.makeTimerSource(flags: [], queue: myQueue)
myTimer?.scheduleRepeating(deadline: .now(), interval: .seconds(1) ,leeway:.milliseconds(100))
myTimer?.setEventHandler {
print("fff")
}
myTimer?.resume()
// myTimer?.cancel()
// myTimer?.activate()
}
接下来就是Group的用法
- notify(依赖任务)
//MARK: - notify(依赖任务)
func GCDTest7() {
let group = DispatchGroup()
myQueue?.async(group: group, qos: .default, flags: [], execute: {
for _ in 0...10 {
print("耗时任务一")
}
})
myQueue?.async(group: group, qos: .default, flags: [], execute: {
for _ in 0...10 {
print("耗时任务二")
}
})
//执行完上面的两个耗时操作, 回到myQueue队列中执行下一步的任务
group.notify(queue: myQueue!) {
print("回到该队列中执行")
}
}
- wait(任务等待)
func GCDTest8() {
let group = DispatchGroup()
myQueue?.async(group: group, qos: .default, flags: [], execute: {
for _ in 0...10 {
print("耗时任务一")
}
})
myQueue?.async(group: group, qos: .default, flags: [], execute: {
for _ in 0...10 {
print("耗时任务二")
sleep(UInt32(3))
}
})
//等待上面任务执行,会阻塞当前线程,超时就执行下面的,上面的继续执行。可以无限等待 .distantFuture
let result = group.wait(timeout: .now() + 2.0)
switch result {
case .success:
print("不超时, 上面的两个任务都执行完")
case .timedOut:
print("超时了, 上面的任务还没执行完执行这了")
}
print("接下来的操作")
}
- enter leave 手动管理group计数,enter和leave必须配对
func GCDTest9() {
let group = DispatchGroup()
group.enter()//把该任务添加到组队列中执行
myQueue?.async(group: group, qos: .default, flags: [], execute: {
for _ in 0...10 {
print("耗时任务一")
group.leave()//执行完之后从组队列中移除
}
})
group.enter()//把该任务添加到组队列中执行
myQueue?.async(group: group, qos: .default, flags: [], execute: {
for _ in 0...10 {
print("耗时任务二")
group.leave()//执行完之后从组队列中移除
}
})
//当上面所有的任务执行完之后通知
group.notify(queue: .main) {
print("所有的任务执行完了")
}
}
以上就是个人对swift 3.o GCD 的理解