外泌体多组学07-骨髓肥大细胞来源外泌体lncRNA与miRNA
目前市面上有很多公司外泌体RNA测序推荐的数据量很少,为了合理评价一个合适的有说服力的有效数据量,我们对公开发表的相关外泌体文章和数据进行检索和信息收集,此次文章如下:
文章信息
- 文献标题:Characterization of protein, long noncoding RNA and microRNA signatures in extracellular vesicles derived from resting and degranulated mast cells
- Doi:https://doi.org/10.1080/20013078.2019.1697583
- 发表时间:Journal of Extracellular Vesicles 06 December 2019
- 作者:上海交通大学医学院上海总医院检验医学科,Li Li
文中缩写:
- MCs,Mast cells
- BMMCs,Bone marrow-derived MCs
关注点
- miRNA,lncRNA在文中的数据量,比对率等数据质量评估指标
文件实验设计方案:Rest-EV vs Sti-EV
Figure 1. Schematic representation of BMMC-derived EVs isolation, and characterization样本说明
体外用rSCF和rIL-3诱导骨髓细胞分化为MCs(Mast Cells),流式细胞术分析证实:该细胞同时表达CD117【 gene KIT 】和FcεRI【gene FCER1A】,具有Mast Cells的特征。
此外,实验证实resting MCs和 degranulated MCs可以释放EVs,degranulated MCs比相同数量的resting MCs释放更多的EVs。
image-20220509230709087.pnglncRNA数据实验大致过程:
-
1.提取total RNA:Rest-EV和 Sti-EV使用 exoRNeasy Serum/Plasma Maxi Kit (Qiagen)提取 total RNA
-
2.去除rRNA:接着 the Ribo-Zero™ rRNA Removal kit(Epicentre, Illumina, WI, USA)进行ribosome RNA (rRNA)去除
-
3.链特异性建库
-
4.Illumina HiSeq4000双端,150bp测序
-
5.每个分组三个生物学重复样本
这里有个奇怪的点啊:后续数据分析部分只分析了lncRNA,没有分析mRNA,看这个实验过程,应该有mRNA的数据的呀!
miRNA数据大致实验过程:
- 1.total RNA提取: exoRNeasy Serum/Plasma Maxi Kit (Qiagen)
- 2.small RNA libraries构建:Illumina TruseqTm Small RNA Preparation kit
- 3.文库质量评估:Bioanalyzer 2100 system
- 4.测序:Illumina HiSeqTM 2500 platform
MC-derived EVs的lncRNA数据分析
6个EVs样本共有110G原始数据,低质量和短片段过滤,error rate小于0.08%,GC content均值为 51.89%( Rest-EV
samples)和49.8%( Sti-EV samples),比对率: between 53.65% and 76.35%
image-20220430231954539.png后续有一个异常样本,去除之后剩余五个样本鉴定了 397 lncRNAs,包括:99 antisense lncRNAs, 181 lincRNAs, 97 processed transcript lncRNAs, 19 sense intronic lncRNAs and 1 sense overlapping lncRNA
image-20220510111751858.pnglncRNA长度分布范围:201 to 84,395 bp
image-20220510111935378.pngmiRNA数据分析
PCA分析检查分组情况:
image-20220510001459669.png比对率:
image-20220510001806860.png
MC-derived EVs样本中不同类型 small RNAs(i.e. misc_RNA, Mt_rRNA, ribosomal RNA (rRNA) 和other non-coding RNA (ncRNA))鉴定出来的个数占比: 272 miRNAs
image-20220510001842460.pngreads长度分布:18 to 25 nts
image-20220510001946417.pngThe size distribution of the reads was mainly concentrated at 18 to 25 nt (Figure 6(d)), indicating that the small RNA-seq obtained the efficient expression information of miRNAs in MC-derived EVs
以上文中使用的各种数据评价指标有:原始数据量,error rate,GC含量,比对率,鉴定出来的lncRNA/miRNA个数、长度,PCA分析看样本分组情况
文章中有lncRNA、miRNA表达谱结果,但没有提供原始数据下载和数据量饱和度评估。