Master Data Management (MDM) Usi

2019-08-20  本文已影响0人  流浪山人

转载: https://www.red-gate.com/simple-talk/sql/database-delivery/master-data-management-mdm-using-sql-server/
So many of the problems that organisations have with their IT applications are due to the struggle with data, in the absence of overall organization-wide control and supervision of data and its progress through the various parts of the organization. Master data management (MDM) offers a solution to the many data woes by controlling data change, It does it in an analogous way to Version Control, so that changes are cleansed, checked, tracked and audited, and any named version can be published to other services . Now Microsoft has an implementation as part of the data platform.

In this article I will describe the basics of Master Data Management and its importance for any organization. After sketching out the concepts of MDM, I will summarize the problems you can solve proactively by keeping your enterprise master data at the highest level of current practice.

I will also explain how MDM is implemented for SQL Server and point out the major services that are provided, and I’ll give a brief overview of how MDM solutions are designed and implemented using MDS, DQS, and SSIS. Since each of these services are quite complex I will tackle a more detailed description of each service in subsequent separate articles.

Context

It is the data flowing through applications that defines the business value of an enterprise systems. All organizations of any size will have a complex set of disparate systems and technologies, including Enterprise Resource Planning (ERP), Human Resource Management (HRM), Customer Relationship Management (CRM), Supply Chain Management (SCM), and Financial system. These systems create a tendency toward data silos. The consequence of this is that data can end up being duplicated, sometimes inconsistent, occasionally incomplete, and sometimes inaccurate. The symptoms of these problems are:

These are some of the more significant problems that have led to the creation of Master Data Management. This is a solution that aims to help organizations to achieve and maintain a single view of master data across the organization. To handle these difficulties that I’ve outlined, a there must be a reasonable way to consolidate, cleanse, enrich, manage and ultimately distribute this data to downstream systems.

What is Master Data Management

Master data management (MDM), defines a process of collecting enterprise data from various sources, applying standard rules and business processes, building a single view of the data, and finally distributing this ‘golden’ version of data to various systems in the enterprise, thereby making it accessible to all consumers.

This is different from existing data warehousing systems. The purpose of data warehousing is to make it easier to perform analytics and business intelligence on historical data from transactional systems as well as from an MDM system. Master Data Management (MDM) reconciles data from various systems to create a single view of the master data, more usually for operational purposes. MDM stores data about entities: in other words

MDM provides a way to import data from various sources using different formats into staging tables: It then can map this staged data to domain attributes for standardization and normalization, cleanse data, apply business rules, enrich data, and finally mark it as a ‘named’ version. This named version of data is ready for transferring to downstream systems, usually via web service endpoints, and provide a mechanism for publishing data to subscribed consumers.

MDM creates a new version of data every time changes are made, along with information about who is making the change. You can trace it back and look for differences (delta) between various versions, when it was made and who did it. By having this level of auditing history, your organization is helped to achieve complete regulatory compliance and also to provide an overall enterprise information management program.

Because MDM comes with industry-standard access controls, only authenticated and authorized users can see and make changes to data. MDM doesn’t only capture an organizations master data at one place but it also provides security to data.

Features of a typical MDM system

MDM architecture

Here are the various components of typical MDM systems. Components can differ from vendor to vendor.

image

MDM in the context of SQL Server

Different vendors implement the MDM concepts that I’ve already explained. They use a range of different technologies such as java, .NET, database, etc. Microsoft implemented MDM concepts with a SQL Server approach using Master Data Services (MDS), Data Quality Service (DQS), and Integration Services (SSIS). Although MDS is a core service to implement MDM, both DQS and SSIS can supplement MDS if required. SQL Server 2008 R2 was the first release with MDS. This was drastically improved in 2012 and improvements have been continuing since then.

This image depicts an example where data is stored in various systems across the enterprise where data quality leaves a lot to be desired. Data is managed using MDS before making available for consumption.

image

Master Data Services (MDS)

Master Data Services is a Microsoft product for developing MDM solutions, it is built on top of SQL Server database technology for back-end processing and provides service-oriented architecture endpoints using Windows Communication Foundation (WCF). You can implement hub architecture using MDS to create centralized and synchronized data sources to reduce data redundancies across systems.

MDS provides following tools and components to implement MDM solutions:

Configuration Manager

This is the starting point to configure Master Data Services and you can create and configure databases using Configuration Manager. This database comes with lots of stored procedures, database tables, and functions which collectively support back-end processing. You can also create a web application called ‘Master Data Manager’. You can associate the database and web application into a single MDM solution.

Master Data Manager

A web application used to perform administrative tasks such creating models, entities, business rules, hierarchies, users, and roles for authorized access. Users can access Master Data Manager to update data. You can also create versions, subscription views, and enable DQS and SSIS integration.

MDSModelDeploy.exe

The typical database lifecycle for any enterprise solution requires several server environments for such activities as development, testing and production. **MDSModelDeploy.exe **utility is a tool to use to create packages of your model objects and data so you can deploy them to other environments.

MDS Web Service

Service-Oriented Architecture (SOA) is a standard way to tackle an enterprise solution with disparate tools and technologies. MDS provides a web service, which can be used to extend MDS capabilities or develop custom solutions.

Add-in for Excel

Microsoft Excel is powerful tool: Business users understand it well as they use it quite often for day-to-day tasks. Master Data Services Add-in for Excel, allows business users to manage data while also allowing administrators to create new entities and attributes with ease. Most of the features available via Master Data Manager are also possible using the Excel plugin.

Data Quality Services (DQS)

Due to an exponential increase in data sources, it’s highly likely that the data from them is incomplete, inaccurate, duplicate, and possibly missing important business attributes as well. The reasons could be anything from user entry error, by way of corruption in transmission or storage to the use of different data standard by different sources.

Data Quality Services (DQS) provides a way to build a knowledge-base using various data points over time and then it can be used for data correction, enrichment, standardization, and de-duplication of data coming from various data sources. DQS maintains a knowledge base in various domains and each domain is specific for data fields. DQS also supports cloud-based reference data services to cleanse enterprise data using this external knowledge bases.

SQL Server Data Quality Service (DQS) provides following features:

Conclusions

Over many years, organizations have been beset with problems that come from the fact that there is no overall organization-wide control and supervision of data and its progress through the various parts of the organization. The problems are made worse by the increasing ‘commoditization’ of organizational functions such as payroll, stock control, and accounting. This has inevitably let to a tendency toward data silos. On top of this, there is the trend towards Service-oriented architectures and micro-service architectures that require far greater coordination of data and a far better self-service data-broking system. To cap these pressures, the legislative overhead within which organizations must operate mean that audit must not only be possible but must be extremely efficient. By adopting Master Data Management, organizations can tackle these three major problems, and also provide way of managing data that is far more appropriate for the changing needs of organizations

上一篇 下一篇

猜你喜欢

热点阅读