引-JS 运行机制最全面的一次梳理

2022-06-29  本文已影响0人  DoEmpty

原文
前言

最近发现有不少介绍JS单线程运行机制的文章,但是发现很多都仅仅是介绍某一部分的知识,而且各个地方的说法还不统一,容易造成困惑。

因此准备梳理这块知识点,结合已有的认知,基于网上的大量参考资料,从浏览器多进程到JS单线程,将JS引擎的运行机制系统的梳理一遍。

展现形式:由于是属于系统梳理型,就没有由浅入深了,而是从头到尾的梳理知识体系, 重点是将关键节点的知识点串联起来,而不是仅仅剖析某一部分知识。

内容是:从浏览器进程,再到浏览器内核运行,再到JS引擎单线程,再到JS事件循环机制,从头到尾系统的梳理一遍,摆脱碎片化,形成一个知识体系

目标是:看完这篇文章后,对浏览器多进程,JS单线程,JS事件循环机制这些都能有一定理解, 有一个知识体系骨架,而不是似懂非懂的感觉。

另外,本文适合有一定经验的前端人员,新手请规避,避免受到过多的概念冲击。可以先存起来,有了一定理解后再看,也可以分成多批次观看,避免过度疲劳。

大纲

区分进程和线程

线程和进程区分不清,是很多新手都会犯的错误,没有关系。这很正常。先看看下面这个形象的比喻:

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">`- 进程是一个工厂,工厂有它的独立资源

再完善完善概念:

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">`- 工厂的资源 -> 系统分配的内存(独立的一块内存)

然后再巩固下:

如果是windows电脑中,可以打开任务管理器,可以看到有一个后台进程列表。对,那里就是查看进程的地方,而且可以看到每个进程的内存资源信息以及cpu占有率。

image.gif

所以,应该更容易理解了:进程是cpu资源分配的最小单位(系统会给它分配内存)

最后,再用较为官方的术语描述一遍:

tips

浏览器是多进程的

理解了进程与线程了区别后,接下来对浏览器进行一定程度上的认识:(先看下简化理解)

关于以上几点的验证,请再第一张图

image.gif

图中打开了Chrome浏览器的多个标签页,然后可以在Chrome的任务管理器中看到有多个进程(分别是每一个Tab页面有一个独立的进程,以及一个主进程)。

感兴趣的可以自行尝试下,如果再多打开一个Tab页,进程正常会+1以上

注意:在这里浏览器应该也有自己的优化机制,有时候打开多个tab页后,可以在Chrome任务管理器中看到,有些进程被合并了 (所以每一个Tab标签对应一个进程并不一定是绝对的)

浏览器都包含哪些进程?

知道了浏览器是多进程后,再来看看它到底包含哪些进程:(为了简化理解,仅列举主要进程)

  1. Browser进程:浏览器的主进程(负责协调、主控),只有一个。作用有
  1. 第三方插件进程:每种类型的插件对应一个进程,仅当使用该插件时才创建
  2. GPU进程:最多一个,用于3D绘制等
  3. 浏览器渲染进程(浏览器内核)(Renderer进程,内部是多线程的):默认每个Tab页面一个进程,互不影响。主要作用为

强化记忆:在浏览器中打开一个网页相当于新起了一个进程(进程内有自己的多线程)

当然,浏览器有时会将多个进程合并(譬如打开多个空白标签页后,会发现多个空白标签页被合并成了一个进程),如图

image.gif

另外,可以通过Chrome的更多工具 -> 任务管理器自行验证

浏览器多进程的优势

相比于单进程浏览器,多进程有如下优点:

简单点理解:如果浏览器是单进程,那么某个Tab页崩溃了,就影响了整个浏览器,体验有多差;同理如果是单进程,插件崩溃了也会影响整个浏览器;而且多进程还有其它的诸多优势。。。

当然,内存等资源消耗也会更大,有点空间换时间的意思。

重点是浏览器内核(渲染进程)

重点来了,我们可以看到,上面提到了这么多的进程,那么,对于普通的前端操作来说,最终要的是什么呢?答案是渲染进程

可以这样理解,页面的渲染,JS的执行,事件的循环,都在这个进程内进行。接下来重点分析这个进程

请牢记,浏览器的渲染进程是多线程的(这点如果不理解,请回头看进程和线程的区分

终于到了线程这个概念了?,好亲切。那么接下来看看它都包含了哪些线程(列举一些主要常驻线程):

  1. GUI渲染线程
  1. JS引擎线程
  1. 事件触发线程
  1. 定时触发器线程
  1. 异步http请求线程

看到这里,如果觉得累了,可以先休息下,这些概念需要被消化,毕竟后续将提到的事件循环机制就是基于事件触发线程的,所以如果仅仅是看某个碎片化知识, 可能会有一种似懂非懂的感觉。要完成的梳理一遍才能快速沉淀,不易遗忘。放张图巩固下吧:

image.gif

再说一点,为什么JS引擎是单线程的?额,这个问题其实应该没有标准答案,譬如,可能仅仅是因为由于多线程的复杂性,譬如多线程操作一般要加锁,因此最初设计时选择了单线程。。。

Browser进程和浏览器内核(Renderer进程)的通信过程

看到这里,首先,应该对浏览器内的进程和线程都有一定理解了,那么接下来,再谈谈浏览器的Browser进程(控制进程)是如何和内核通信的, 这点也理解后,就可以将这部分的知识串联起来,从头到尾有一个完整的概念。

如果自己打开任务管理器,然后打开一个浏览器,就可以看到:任务管理器中出现了两个进程(一个是主控进程,一个则是打开Tab页的渲染进程), 然后在这前提下,看下整个的过程:(简化了很多)

这里绘一张简单的图:(很简化)

image.gif

看完这一整套流程,应该对浏览器的运作有了一定理解了,这样有了知识架构的基础后,后续就方便往上填充内容。

这块再往深处讲的话就涉及到浏览器内核源码解析了,不属于本文范围。

如果这一块要深挖,建议去读一些浏览器内核源码解析文章,或者可以先看看参考下来源中的第一篇文章,写的不错

梳理浏览器内核中线程之间的关系

到了这里,已经对浏览器的运行有了一个整体的概念,接下来,先简单梳理一些概念

GUI渲染线程与JS引擎线程互斥

由于JavaScript是可操纵DOM的,如果在修改这些元素属性同时渲染界面(即JS线程和UI线程同时运行),那么渲染线程前后获得的元素数据就可能不一致了。

因此为了防止渲染出现不可预期的结果,浏览器设置GUI渲染线程与JS引擎为互斥的关系,当JS引擎执行时GUI线程会被挂起, GUI更新则会被保存在一个队列中等到JS引擎线程空闲时立即被执行。

JS阻塞页面加载

从上述的互斥关系,可以推导出,JS如果执行时间过长就会阻塞页面。

譬如,假设JS引擎正在进行巨量的计算,此时就算GUI有更新,也会被保存到队列中,等待JS引擎空闲后执行。然后,由于巨量计算,所以JS引擎很可能很久很久后才能空闲,自然会感觉到巨卡无比。

所以,要尽量避免JS执行时间过长,这样就会造成页面的渲染不连贯,导致页面渲染加载阻塞的感觉。

WebWorker,JS的多线程?

前文中有提到JS引擎是单线程的,而且JS执行时间过长会阻塞页面,那么JS就真的对cpu密集型计算无能为力么?

所以,后来HTML5中支持了Web Worker

MDN的官方解释是:

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">`Web Worker为Web内容在后台线程中运行脚本提供了一种简单的方法。线程可以执行任务而不干扰用户界面

一个worker是使用一个构造函数创建的一个对象(e.g. Worker()) 运行一个命名的JavaScript文件

这个文件包含将在工作线程中运行的代码; workers 运行在另一个全局上下文中,不同于当前的window

因此,使用 window快捷方式获取当前全局的范围 (而不是self) 在一个 Worker 内将返回错误` </pre>

这样理解下:

所以,如果有非常耗时的工作,请单独开一个Worker线程,这样里面不管如何翻天覆地都不会影响JS引擎主线程, 只待计算出结果后,将结果通信给主线程即可,perfect!

而且注意下,JS引擎是单线程的,这一点的本质仍然未改变,Worker可以理解是浏览器给JS引擎开的外挂,专门用来解决那些大量计算问题。

其它,关于Worker的详解就不是本文的范畴了,因此不再赘述。

WebWorker与SharedWorker

既然都到了这里,就再提一下SharedWorker(避免后续将这两个概念搞混)

看到这里,应该就很容易明白了,本质上就是进程和线程的区别。SharedWorker由独立的进程管理,WebWorker只是属于render进程下的一个线程

简单梳理下浏览器渲染流程

本来是直接计划开始谈JS运行机制的,但想了想,既然上述都一直在谈浏览器,直接跳到JS可能再突兀,因此,中间再补充下浏览器的渲染流程(简单版本)

为了简化理解,前期工作直接省略成:(要展开的或完全可以写另一篇超长文)

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">`- 浏览器输入url,浏览器主进程接管,开一个下载线程,
然后进行 http请求(略去DNS查询,IP寻址等等操作),然后等待响应,获取内容,
随后将内容通过RendererHost接口转交给Renderer进程

浏览器器内核拿到内容后,渲染大概可以划分成以下几个步骤:

  1. 解析html建立dom树
  2. 解析css构建render树(将CSS代码解析成树形的数据结构,然后结合DOM合并成render树)
  3. 布局render树(Layout/reflow),负责各元素尺寸、位置的计算
  4. 绘制render树(paint),绘制页面像素信息
  5. 浏览器会将各层的信息发送给GPU,GPU会将各层合成(composite),显示在屏幕上。

所有详细步骤都已经略去,渲染完毕后就是load事件了,之后就是自己的JS逻辑处理了

既然略去了一些详细的步骤,那么就提一些可能需要注意的细节把。

这里重绘参考来源中的一张图:(参考来源第一篇)

image.gif

load事件与DOMContentLoaded事件的先后

上面提到,渲染完毕后会触发load事件,那么你能分清楚load事件与DOMContentLoaded事件的先后么?

很简单,知道它们的定义就可以了:

(譬如如果有async加载的脚本就不一定完成)

(渲染完毕了)

所以,顺序是:DOMContentLoaded -> load

css加载是否会阻塞dom树渲染?

这里说的是头部引入css的情况

首先,我们都知道:css是由单独的下载线程异步下载的。

然后再说下几个现象:

这可能也是浏览器的一种优化机制。

因为你加载css的时候,可能会修改下面DOM节点的样式, 如果css加载不阻塞render树渲染的话,那么当css加载完之后, render树可能又得重新重绘或者回流了,这就造成了一些没有必要的损耗。所以干脆就先把DOM树的结构先解析完,把可以做的工作做完,然后等你css加载完之后, 在根据最终的样式来渲染render树,这种做法性能方面确实会比较好一点。

普通图层和复合图层

渲染步骤中就提到了composite概念。

可以简单的这样理解,浏览器渲染的图层一般包含两大类:普通图层以及复合图层

首先,普通文档流内可以理解为一个复合图层(这里称为默认复合层,里面不管添加多少元素,其实都是在同一个复合图层中)

其次,absolute布局(fixed也一样),虽然可以脱离普通文档流,但它仍然属于默认复合层

然后,可以通过硬件加速的方式,声明一个新的复合图层,它会单独分配资源 (当然也会脱离普通文档流,这样一来,不管这个复合图层中怎么变化,也不会影响默认复合层里的回流重绘)

可以简单理解下:GPU中,各个复合图层是单独绘制的,所以互不影响,这也是为什么某些场景硬件加速效果一级棒

可以Chrome源码调试 -> More Tools -> Rendering -> Layer borders中看到,黄色的就是复合图层信息

如下图。可以验证上述的说法

image.gif

如何变成复合图层(硬件加速)

将该元素变成一个复合图层,就是传说中的硬件加速技术

作用是提前告诉浏览器要变化,这样浏览器会开始做一些优化工作(这个最好用完后就释放)

absolute和硬件加速的区别

可以看到,absolute虽然可以脱离普通文档流,但是无法脱离默认复合层。所以,就算absolute中信息改变时不会改变普通文档流中render树, 但是,浏览器最终绘制时,是整个复合层绘制的,所以absolute中信息的改变,仍然会影响整个复合层的绘制。(浏览器会重绘它,如果复合层中内容多,absolute带来的绘制信息变化过大,资源消耗是非常严重的)

而硬件加速直接就是在另一个复合层了(另起炉灶),所以它的信息改变不会影响默认复合层 (当然了,内部肯定会影响属于自己的复合层),仅仅是引发最后的合成(输出视图)

复合图层的作用?

一般一个元素开启硬件加速后会变成复合图层,可以独立于普通文档流中,改动后可以避免整个页面重绘,提升性能

但是尽量不要大量使用复合图层,否则由于资源消耗过度,页面反而会变的更卡

硬件加速时请使用index

使用硬件加速时,尽可能的使用index,防止浏览器默认给后续的元素创建复合层渲染

具体的原理时这样的:webkit CSS3中,如果这个元素添加了硬件加速,并且index层级比较低, 那么在这个元素的后面其它元素(层级比这个元素高的,或者相同的,并且releative或absolute属性相同的), 会默认变为复合层渲染,如果处理不当会极大的影响性能

简单点理解,其实可以认为是一个隐式合成的概念:如果a是一个复合图层,而且b在a上面,那么b也会被隐式转为一个复合图层,这点需要特别注意

另外,这个问题可以在这个地址看到重现(原作者分析的挺到位的,直接上链接):

http://web.jobbole.com/83575/

从Event Loop谈JS的运行机制

到此时,已经是属于浏览器页面初次渲染完毕后的事情,JS引擎的一些运行机制分析。

注意,这里不谈可执行上下文VOscop chain等概念(这些完全可以整理成另一篇文章了),这里主要是结合Event Loop来谈JS代码是如何执行的。

读这部分的前提是已经知道了JS引擎是单线程,而且这里会用到上文中的几个概念:(如果不是很理解,可以回头温习)

然后再理解一个概念:

看图:

image.gif

看到这里,应该就可以理解了:为什么有时候setTimeout推入的事件不能准时执行?因为可能在它推入到事件列表时,主线程还不空闲,正在执行其它代码, 所以自然有误差。

事件循环机制进一步补充

这里就直接引用一张图片来协助理解:(参考自Philip Roberts的演讲《Help, I'm stuck in an event-loop》)

image.gif

上图大致描述就是:

栈中的代码调用某些api时,它们会在事件队列中添加各种事件(当满足触发条件后,如ajax请求完毕)

单独说说定时器

上述事件循环机制的核心是:JS引擎线程和事件触发线程

但事件上,里面还有一些隐藏细节,譬如调用setTimeout后,是如何等待特定时间后才添加到事件队列中的?

是JS引擎检测的么?当然不是了。它是由定时器线程控制(因为JS引擎自己都忙不过来,根本无暇分身)

为什么要单独的定时器线程?因为JavaScript引擎是单线程的, 如果处于阻塞线程状态就会影响记计时的准确,因此很有必要单独开一个线程用来计时。

什么时候会用到定时器线程?当使用setTimeoutsetInterval,它需要定时器线程计时,计时完成后就会将特定的事件推入事件队列中。

譬如:

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">setTimeout(function(){ console.log('hello!'); }, 1000); </pre>

这段代码的作用是当1000毫秒计时完毕后(由定时器线程计时),将回调函数推入事件队列中,等待主线程执行

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">`setTimeout(function(){
console.log('hello!');
}, 0);

console.log('begin');` </pre>

这段代码的效果是最快的时间内将回调函数推入事件队列中,等待主线程执行

注意:

(不过也有一说是不同浏览器有不同的最小时间设定)

setTimeout而不是setInterval

用setTimeout模拟定期计时和直接用setInterval是有区别的。

因为每次setTimeout计时到后就会去执行,然后执行一段时间后才会继续setTimeout,中间就多了误差 (误差多少与代码执行时间有关)

而setInterval则是每次都精确的隔一段时间推入一个事件 (但是,事件的实际执行时间不一定就准确,还有可能是这个事件还没执行完毕,下一个事件就来了)

而且setInterval有一些比较致命的问题就是:

就会导致定时器代码连续运行好几次,而之间没有间隔。就算正常间隔执行,多个setInterval的代码执行时间可能会比预期小(因为代码执行需要一定时间)

它会把setInterval的回调函数放在队列中,等浏览器窗口再次打开时,一瞬间全部执行时

所以,鉴于这么多但问题,目前一般认为的最佳方案是:用setTimeout模拟setInterval,或者特殊场合直接用requestAnimationFrame

补充:JS高程中有提到,JS引擎会对setInterval进行优化,如果当前事件队列中有setInterval的回调,不会重复添加。不过,仍然是有很多问题。。。

事件循环进阶:macrotask与microtask

这段参考了参考来源中的第2篇文章(英文版的),(加了下自己的理解重新描述了下), 强烈推荐有英文基础的同学直接观看原文,作者描述的很清晰,示例也很不错,如下:

https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/

上文中将JS事件循环机制梳理了一遍,在ES5的情况是够用了,但是在ES6盛行的现在,仍然会遇到一些问题,譬如下面这题:

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">`console.log('script start');

setTimeout(function() {
console.log('setTimeout');
}, 0);

Promise.resolve().then(function() {
console.log('promise1');
}).then(function() {
console.log('promise2');
});

console.log('script end');` </pre>

嗯哼,它的正确执行顺序是这样子的:

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">script start script end promise1 promise2 setTimeout </pre>

为什么呢?因为Promise里有了一个一个新的概念:microtask

或者,进一步,JS中分为两种任务类型:macrotaskmicrotask,在ECMAScript中,microtask称为jobs,macrotask可称为task

它们的定义?区别?简单点可以按如下理解:

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">task->渲染->task->... </pre>

分别很么样的场景会形成macrotask和microtask呢?

补充:在node环境下,process.nextTick的优先级高于Promise,也就是可以简单理解为:在宏任务结束后会先执行微任务队列中的nextTickQueue部分,然后才会执行微任务中的Promise部分。

参考:https://segmentfault.com/q/1010000011914016

再根据线程来理解下:

(这点由自己理解+推测得出,因为它是在主线程下无缝执行的)

所以,总结下运行机制:

如图:

[图片上传失败...(image-509e24-1656476157562)]

另外,请注意下Promisepolyfill与官方版本的区别:

注意,有一些浏览器执行结果不一样(因为它们可能把microtask当成macrotask来执行了), 但是为了简单,这里不描述一些不标准的浏览器下的场景(但记住,有些浏览器可能并不标准)

20180126补充:使用MutationObserver实现microtask

MutationObserver可以用来实现microtask (它属于microtask,优先级小于Promise, 一般是Promise不支持时才会这样做)

它是HTML5中的新特性,作用是:监听一个DOM变动, 当DOM对象树发生任何变动时,Mutation Observer会得到通知

像以前的Vue源码中就是利用它来模拟nextTick的, 具体原理是,创建一个TextNode并监听内容变化, 然后要nextTick的时候去改一下这个节点的文本内容, 如下:(Vue的源码,未修改)

<pre data-tool="mdnice编辑器" style="margin: 10px 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; border-radius: 5px; box-shadow: rgba(0, 0, 0, 0.55) 0px 2px 10px;">`var counter = 1
var observer = new MutationObserver(nextTickHandler)
var textNode = document.createTextNode(String(counter))

observer.observe(textNode, {
characterData: true
})
timerFunc = () => {
counter = (counter + 1) % 2
textNode.data = String(counter)
}` </pre>

对应Vue源码链接

不过,现在的Vue(2.5+)的nextTick实现移除了MutationObserver的方式(据说是兼容性原因), 取而代之的是使用MessageChannel (当然,默认情况仍然是Promise,不支持才兼容的)。

MessageChannel属于宏任务,优先级是:MessageChannel->setTimeout, 所以Vue(2.5+)内部的nextTick与2.4及之前的实现是不一样的,需要注意下。

这里不展开,可以看下https://juejin.im/post/5a1af88f5188254a701ec230

写在最后的话

看到这里,不知道对JS的运行机制是不是更加理解了,从头到尾梳理,而不是就某一个碎片化知识应该是会更清晰的吧?

同时,也应该注意到了JS根本就没有想象的那么简单,前端的知识也是无穷无尽,层出不穷的概念、N多易忘的知识点、各式各样的框架、 底层原理方面也是可以无限的往下深挖,然后你就会发现,你知道的太少了。。。

上一篇下一篇

猜你喜欢

热点阅读