数据预处理

2017-07-19  本文已影响0人  神奇的考拉

前提

在数据挖掘中,海量的原始数据中存在大量不完整(有缺失值)、不一致、有异常的数据,会严重影响到数据挖掘建模的执行效果,甚至会导致挖掘结果的偏差,进而数据清洗就变得尤为重要。在数据清洗完成后接着甚至同时进行数据集成、变换、规约等一系列的处理,而整个过程称之为数据预处理。在整个数据挖掘过程中,数据预处理工作大致占据整个过程的60%
一般来说,数据预处理的主要包括如下内容: 数据清洗、数据集成、数据变换、数据规约。
接下来的内容,我们也是从这几方面阐述。

数据预处理

1.1 数据清洗

数据清洗主要是删除原始数据中的无关数据、重复数据、平滑噪声数据,筛选掉与挖掘主题无关的数据,处理缺失值及异常值等。

注:由于R语言做数据挖掘、分析相当便捷,整个文章的实例都是基于R实现的。比如发现缺失值的存在:is.na(), 另外函数complete.cases()可识别样本数据是否完整进而得出缺失情况等等
<code>
缺失数据的识别
is.na(inputfile) #判断是否存在缺失
n=sum(is.na(inputfile)) #输出缺失值个数
异常值识别
par(mfrow=c(1,2))#将绘图窗口划为1行两列,同时显示两图
dotchart(inputfile$sales)#绘制单变量散点图
boxplot(inputfile$sales,horizontal=T)#绘制水平箱形图
</code>

常见的缺失值处理方法: 删除法、替换法、插补法等
(1)、删除法: 最简单的缺失值处理方法。从不同角度进行数据处理划分:

删除法会存在信息浪费的问题并数据结构会变动,致使后续得到的统计结果又偏差.

<code>
缺失值的处理
inputfile$date=as.numeric(inputfile$date)#将日期转换成数值型变量
sub=which(is.na(inputfile$sales))#识别缺失值所在行数
inputfile1=inputfile[-sub,]#将数据集分成完整数据和缺失数据两部分
inputfile2=inputfile[sub,]
行删除法处理缺失,结果转存
result1=inputfile1
</code>
(2)、替换法
一般根据属性将变量分:数值型和非数值型

1.2数据集成

在数据挖掘过程中,可能会存在数据分布在不同的数据源中,而这个时候需要将多个数据源合并存放在一个一致的数据存储(如数据仓库),整个过程称之为数据集成

数据仓库:
关于数据仓库构思
漫谈数据仓库之维度建模
漫谈数据仓库之拉链表(原理、设计以及在Hive中的实现)

在R中,通过将存储在两个数据框中的数据以关键字为依据,以行为单位做列向合并,直接通过merge()函数完成。
merge(数据框1,数据框2,by="关键字"),而合并后的新数据自动按照关键字取值大小升序排列。不过在数据集成过程中存在表达形式不一样,导致不能直接完成匹配,就需要我们进行加以转换、提炼、集成等操作。具体从如下几方面:
(1)、实体识别
从不同数据源识别出现实世界的实体,来完成统一不同源的数据矛盾之处。

实体识别承担着检测和解决这些冲突的任务

(2)、冗余属性识别

1.3数据变换

数据变换主要对数据进行规范化处理、连续变量的离散化以及属性属性的构造,将数据转换成“适当的”形式,来满足挖掘任务及算法的需要。
(1)、简单函数变换
对原始数据进行某些数学函数变换,常见平方、开方、取对数、差分运算等等
主要来完成不具有正态分布变换服从正态分布;非平稳序列变为平稳序列等等
(2)、数据规范化
为了清除指标之间的量纲和取值范围差异的影响,需要进行标准化处理,将数据按照比例进行缩放,使之落入一个特定区域,便于进行综合分析。
常见方法如下:

离差标准化保留了原来的数据中存在的关系,是清除量纲和数据取值范围影响的最简单方法。同样它的缺点也明显若是数集中某个数值很大,则规范化后各值会接近为0,并且将会相差不大。另外一旦超过[min,max]时,需要重新确定max和min

由于均值和标准差容易受离群点的影响,常常通过使用中位数M取代均值,其次使用绝对标准差取代标准差
σ* = ∑|Xi-W|,其中W为平均数或中位数

<code>
读取数据
data=read.csv('./data/normalization_data.csv',he=F)
最小-最大规范化
b1=(data[,1]-min(data[,1]))/(max(data[,1])-min(data[,1]))
b2=(data[,2]-min(data[,2]))/(max(data[,2])-min(data[,2]))
b3=(data[,3]-min(data[,3]))/(max(data[,3])-min(data[,3]))
b4=(data[,4]-min(data[,4]))/(max(data[,4])-min(data[,4]))
data_scatter=cbind(b1,b2,b3,b4)
零-均值规范化
data_zscore=scale(data)
小数定标规范化
i1=ceiling(log(max(abs(data[,1])),10))#小数定标的指数
c1=data[,1]/10^i1
i2=ceiling(log(max(abs(data[,2])),10))
c2=data[,2]/10^i2
i3=ceiling(log(max(abs(data[,3])),10))
c3=data[,3]/10^i3
i4=ceiling(log(max(abs(data[,4])),10))
c4=data[,4]/10^i4
data_dot=cbind(c1,c2,c3,c4)
</code>

(3)、连续属性离散化
在数据的取值范围内设定若干个离散的划分点,将取值范围划分为不同的离散化的区间,最后使用不同的符号或数值代表落在不同区间的数据值。
常见离散方法:

(4)、属性构造
利用已有的属性构造出新的属性
(5)、小波变换(本次不进行阐述)

1.4数据规约

数据规约在大数据集上产生更小的且保持原数据完整性的新数据集,提升在数据集合上进行分析和挖掘的效率。
意义如下:

上一篇 下一篇

猜你喜欢

热点阅读