【代码阅读】vision transformer

2021-10-25  本文已影响0人  Joyner2018

vit.py的模型文件

#encoding=utf-8
import torch
from torch import nn

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

# helpers
'''
    主要用于生成成对的输入
    比如
        卷积中的kennel size,当的size为x时,生成(x,y)
        图像中resize中,输入只有一个参数x时,则生成(x,x),即需要resize成(x,x)
            输入两个参数(x,y),则不做任何修改,直接返回(x,y)
'''
def pair(t):
    return t if isinstance(t, tuple) else (t, t)

# classes

'''
    PreNorm表示
        先归一化
        再执行fn的操作
'''
class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)

'''
    前向连接
        线性层
            激活层
            随机丢弃层
        线性层
            随机丢弃层
'''
class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout = 0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    def forward(self, x):
        return self.net(x)

'''
    注意力层
        输入的x,
            线性层
            分块得到q,k,v
            根据head的数量把q,k,v分成head个分支
                rearrange(t, 'b n (h d) -> b h n d', h = self.heads)
'''
class Attention(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        qkv = self.to_qkv(x).chunk(3, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

        attn = self.attend(dots)

        out = torch.matmul(attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)

class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
            ]))
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x

class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
        super().__init__()
        image_height, image_width = pair(image_size)
        patch_height, patch_width = pair(patch_size)

        assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'

        num_patches = (image_height // patch_height) * (image_width // patch_width)
        patch_dim = channels * patch_height * patch_width
        assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'

        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
            nn.Linear(patch_dim, dim),
        )

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

        self.pool = pool
        self.to_latent = nn.Identity()

        self.mlp_head = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, num_classes) 
        )

    def forward(self, img):
        print(img.shape)
        x = self.to_patch_embedding(img)
        print(x.shape)
        print(x.type())
        b, n, _ = x.shape

        cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
        x = torch.cat((cls_tokens, x), dim=1)
        print("self.pos_embedding.size()",self.pos_embedding.size())
        print("n+1",n+1)
        x += self.pos_embedding[:, :(n + 1)]
        x = self.dropout(x)

        x = self.transformer(x)

        x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]

        x = self.to_latent(x)
        return self.mlp_head(x)

if __name__=="__main__":
    from torchsummary import summary
    vit= ViT(
        image_size = 256,
        patch_size = 32,
        num_classes = 1000,
        dim = 1024,
        depth = 6,
        heads = 16,
        mlp_dim = 2048,
        dropout = 0.1,
        emb_dropout = 0.1
    )
    
    img = torch.randn(1, 3, 256, 256)
    vit=vit.cuda()
    img=img.cuda()
    preds = vit(img)
    print(preds.size())
    summary(vit,(3,256,256))

知识点

rearrange(t, 'b n (h d) -> b h n d', h = self.heads)
rearrange(out, 'b h n d -> b n (h d)')
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width) 支持梯度反传
repeat(self.cls_token, '() n d -> b n d', b = b)

运行结果

torch.Size([1, 3, 256, 256])
torch.Size([1, 64, 1024])
torch.cuda.FloatTensor
self.pos_embedding.size() torch.Size([1, 65, 1024])
n+1 65
torch.Size([1, 1000])
torch.Size([2, 3, 256, 256])
torch.Size([2, 64, 1024])
torch.cuda.FloatTensor
self.pos_embedding.size() torch.Size([1, 65, 1024])
n+1 65
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
         Rearrange-1             [-1, 64, 3072]               0
            Linear-2             [-1, 64, 1024]       3,146,752
           Dropout-3             [-1, 65, 1024]               0
         LayerNorm-4             [-1, 65, 1024]           2,048
            Linear-5             [-1, 65, 3072]       3,145,728
           Softmax-6           [-1, 16, 65, 65]               0
            Linear-7             [-1, 65, 1024]       1,049,600
           Dropout-8             [-1, 65, 1024]               0
         Attention-9             [-1, 65, 1024]               0
          PreNorm-10             [-1, 65, 1024]               0
        LayerNorm-11             [-1, 65, 1024]           2,048
           Linear-12             [-1, 65, 2048]       2,099,200
             GELU-13             [-1, 65, 2048]               0
          Dropout-14             [-1, 65, 2048]               0
           Linear-15             [-1, 65, 1024]       2,098,176
          Dropout-16             [-1, 65, 1024]               0
      FeedForward-17             [-1, 65, 1024]               0
          PreNorm-18             [-1, 65, 1024]               0
        LayerNorm-19             [-1, 65, 1024]           2,048
           Linear-20             [-1, 65, 3072]       3,145,728
          Softmax-21           [-1, 16, 65, 65]               0
           Linear-22             [-1, 65, 1024]       1,049,600
          Dropout-23             [-1, 65, 1024]               0
        Attention-24             [-1, 65, 1024]               0
          PreNorm-25             [-1, 65, 1024]               0
        LayerNorm-26             [-1, 65, 1024]           2,048
           Linear-27             [-1, 65, 2048]       2,099,200
             GELU-28             [-1, 65, 2048]               0
          Dropout-29             [-1, 65, 2048]               0
           Linear-30             [-1, 65, 1024]       2,098,176
          Dropout-31             [-1, 65, 1024]               0
      FeedForward-32             [-1, 65, 1024]               0
          PreNorm-33             [-1, 65, 1024]               0
        LayerNorm-34             [-1, 65, 1024]           2,048
           Linear-35             [-1, 65, 3072]       3,145,728
          Softmax-36           [-1, 16, 65, 65]               0
           Linear-37             [-1, 65, 1024]       1,049,600
          Dropout-38             [-1, 65, 1024]               0
        Attention-39             [-1, 65, 1024]               0
          PreNorm-40             [-1, 65, 1024]               0
        LayerNorm-41             [-1, 65, 1024]           2,048
           Linear-42             [-1, 65, 2048]       2,099,200
             GELU-43             [-1, 65, 2048]               0
          Dropout-44             [-1, 65, 2048]               0
           Linear-45             [-1, 65, 1024]       2,098,176
          Dropout-46             [-1, 65, 1024]               0
      FeedForward-47             [-1, 65, 1024]               0
          PreNorm-48             [-1, 65, 1024]               0
        LayerNorm-49             [-1, 65, 1024]           2,048
           Linear-50             [-1, 65, 3072]       3,145,728
          Softmax-51           [-1, 16, 65, 65]               0
           Linear-52             [-1, 65, 1024]       1,049,600
          Dropout-53             [-1, 65, 1024]               0
        Attention-54             [-1, 65, 1024]               0
          PreNorm-55             [-1, 65, 1024]               0
        LayerNorm-56             [-1, 65, 1024]           2,048
           Linear-57             [-1, 65, 2048]       2,099,200
             GELU-58             [-1, 65, 2048]               0
          Dropout-59             [-1, 65, 2048]               0
           Linear-60             [-1, 65, 1024]       2,098,176
          Dropout-61             [-1, 65, 1024]               0
      FeedForward-62             [-1, 65, 1024]               0
          PreNorm-63             [-1, 65, 1024]               0
        LayerNorm-64             [-1, 65, 1024]           2,048
           Linear-65             [-1, 65, 3072]       3,145,728
          Softmax-66           [-1, 16, 65, 65]               0
           Linear-67             [-1, 65, 1024]       1,049,600
          Dropout-68             [-1, 65, 1024]               0
        Attention-69             [-1, 65, 1024]               0
          PreNorm-70             [-1, 65, 1024]               0
        LayerNorm-71             [-1, 65, 1024]           2,048
           Linear-72             [-1, 65, 2048]       2,099,200
             GELU-73             [-1, 65, 2048]               0
          Dropout-74             [-1, 65, 2048]               0
           Linear-75             [-1, 65, 1024]       2,098,176
          Dropout-76             [-1, 65, 1024]               0
      FeedForward-77             [-1, 65, 1024]               0
          PreNorm-78             [-1, 65, 1024]               0
        LayerNorm-79             [-1, 65, 1024]           2,048
           Linear-80             [-1, 65, 3072]       3,145,728
          Softmax-81           [-1, 16, 65, 65]               0
           Linear-82             [-1, 65, 1024]       1,049,600
          Dropout-83             [-1, 65, 1024]               0
        Attention-84             [-1, 65, 1024]               0
          PreNorm-85             [-1, 65, 1024]               0
        LayerNorm-86             [-1, 65, 1024]           2,048
           Linear-87             [-1, 65, 2048]       2,099,200
             GELU-88             [-1, 65, 2048]               0
          Dropout-89             [-1, 65, 2048]               0
           Linear-90             [-1, 65, 1024]       2,098,176
          Dropout-91             [-1, 65, 1024]               0
      FeedForward-92             [-1, 65, 1024]               0
          PreNorm-93             [-1, 65, 1024]               0
      Transformer-94             [-1, 65, 1024]               0
         Identity-95                 [-1, 1024]               0
        LayerNorm-96                 [-1, 1024]           2,048
           Linear-97                 [-1, 1000]       1,025,000
================================================================
Total params: 54,554,600
Trainable params: 54,554,600
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.75
Forward/backward pass size (MB): 64.02
Params size (MB): 208.11
Estimated Total Size (MB): 272.88
----------------------------------------------------------------
上一篇 下一篇

猜你喜欢

热点阅读