全栈工程师

1. spark streaming Job 架构和容错解析

2018-06-28  本文已影响16人  尼小摩

一.Spark streaming Job 架构

SparkStreaming框架会自动启动Job并每隔BatchDuration时间会自动触发Job的调用。

Spark Streaming的Job 分为两大类:

  1. 每隔BatchInterval时间片就会产生的一个个Job,这里的Job并不是Spark Core中的Job,它只是基于DStreamGraph而生成的RDD的DAG而已;从Java角度讲相当于Runnable接口的实现类,要想运行Job需要将Job提交给JobScheduler,在JobScheduler内部会通过线程池的方式创建运行Job的一个个线程,当找到一个空闲的线程后会将Job提交到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行)。为什么使用线程池呢?

    a. Job根据BatchInterval不断生成,为了减少线程创建而带来的效率提升我们需要使用线程池(这和在Executor中通过启动线程池的方式来执行Task有异曲同工之妙);

    b. 如果Job的运行设置为FAIR公平调度的方式,这个时候也需要多线程的支持;

  2. 上面Job提交的Spark Job本身。单从这个时刻来看,此次的Job和Spark core中的Job没有任何的区别。

理解Spark Streaming的Job的整个架构和运行机制对于精通Spark Streaming是至关重要的。

我们运行以下的程序,通过这个程序的运行过程进一步加深理解Spark Streaming流处理的Job的执行的过程,代码如下:

import java.sql.Connection;
import java.sql.DriverManager;
import java.util.LinkedList;

public class ConnectionPool {

private static LinkedList<Connection> connectionQueue;

static {
try {
Class.forName("com.mysql.jdbc.Driver");
} catch (ClassNotFoundException e) {
e.printStackTrace();
} 
}

public synchronized static Connection getConnection() {
try {
if(connectionQueue == null) {
connectionQueue = new LinkedList<Connection>();
for(int i = 0; i < 5; i++) {
Connection conn = DriverManager.getConnection(
"jdbc:mysql://Master:3306/sparkstreaming",
"root",
"778899..");
connectionQueue.push(conn); 
}
}
} catch (Exception e) {
e.printStackTrace();
}
return connectionQueue.poll();
}

public static void returnConnection(Connection conn) {
connectionQueue.push(conn); 
}
}

第二部分: 通过sparkstreaming 将网络产生的数据进行统计统计,并将结果写入mysql数据库

object OnlineForeachRDD2DB {

  def main(args: Array[String]){

    /**

    * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,

     * 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置

     * 为local,则代表Spark程序在本地运行,特别适合于机器配置条件非常差(例如

    * 只有1G的内存)的初学者

     */

    val conf = new SparkConf() //创建SparkConf对象

    conf.setAppName("OnlineForeachRDD") //设置应用程序的名称,在程序运行的监控界面可以看到名称

    conf.setMaster("spark://Master:7077") //此时,程序在Spark集群

    conf.setMaster("local[6]")

    //设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口

    val ssc = new StreamingContext(conf, Seconds(5))

    val lines = ssc.socketTextStream("Master", 9999)

    val words = lines.flatMap(_.split(" "))

    val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)



    wordCounts.foreachRDD{ rdd =>

      rdd.foreachPartition{ partitionOfRecords => {

        // ConnectionPool is a static, lazily initialized pool of connections

        val connection = ConnectionPool.getConnection()

        partitionOfRecords.foreach(record => {

          val sql = "insert into streaming_itemcount(item,count) values('" + record._1 + "'," + record._2 + ")"

          val stmt = connection.createStatement();

          stmt.executeUpdate(sql);

        })

        ConnectionPool.returnConnection(connection)  // return to the pool for future reuse

      }}

    }



    /**

      *  在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,

      *  在JobScheduler的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和

      *  ReceiverTacker的start方法:

      *  1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job

      *  2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动

      *  ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把

      *  数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过

      *  ReceivedBlockTracker来管理接受到的元数据信息每个BatchInterval会产生一个具体的Job,

      *  其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG

      *  而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,

      *  在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中

      *  基于RDD的Action触发真正的作业的运行),

      *  为什么使用线程池呢?

      *  1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task

      *  有异曲同工之妙;

      *  2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持。

      */

    ssc.start()

    ssc.awaitTermination()

  }

}

代码中以注释的方式描述了Spakr job 启动的过程,下面结合源码做进一步分析:
StreamingContext的start()方法:

/**
 * Start the execution of the streams.
 *
 * @throws IllegalStateException if the StreamingContext is already stopped.
 */
def start(): Unit = synchronized {
  state match {
    case INITIALIZED =>
      startSite.set(DStream.getCreationSite())
      StreamingContext.ACTIVATION_LOCK.synchronized {
        StreamingContext.assertNoOtherContextIsActive()
        try {
          validate()

          // Start the streaming scheduler in a new thread, so that thread local properties
          // like call sites and job groups can be reset without affecting those of the
          // current thread.
          ThreadUtils.runInNewThread("streaming-start") {
            sparkContext.setCallSite(startSite.get)
            sparkContext.clearJobGroup()
            sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
            savedProperties.set(SerializationUtils.clone(
              sparkContext.localProperties.get()).asInstanceOf[Properties])
          scheduler.start()
          }
          state = StreamingContextState.ACTIVE
        } catch {
          case NonFatal(e) =>
            logError("Error starting the context, marking it as stopped", e)
            scheduler.stop(false)
            state = StreamingContextState.STOPPED
            throw e
        }
        StreamingContext.setActiveContext(this)
      }
      shutdownHookRef = ShutdownHookManager.addShutdownHook(
        StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown)
      // Registering Streaming Metrics at the start of the StreamingContext
      assert(env.metricsSystem != null)
      env.metricsSystem.registerSource(streamingSource)
      uiTab.foreach(_.attach())
      logInfo("StreamingContext started")
    case ACTIVE =>
      logWarning("StreamingContext has already been started")
    case STOPPED =>
      throw new IllegalStateException("StreamingContext has already been stopped")
  }
}

可以看到StreamingContext的start()的方法中调用了scheduler.start(),其scheduler 是JobScheduler的对象,该对象在StreamingContext创建是被实例化:

private[streaming] val scheduler = new JobScheduler(this)

接下来在JobScheduler.start()内部实例化EventLoop,并执行EventLoop.start()进行消息循环,在JobScheduler.start()内部构造ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:



JobGenerator的start()方法中会调用startFirstTime()方法和restart()方法



最终调用generateJobs()方法不断生成job:

ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动 ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过ReceivedBlockTracker来管理接受到的元数据信息.过程如图所示:



源码如下:(注意红色字体部分代码)

每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler, 在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中 基于RDD的Action触发真正的作业的运行)

二 Spark Streaming Job容错架构和运行机制

Spark容错分为:Driver级别的容错和Executor级别的容错。

Spark Streaming的容错机制是基于RDD的容错机制。

主要表现为:
  1. checkpoint
  2. 基于血统(lineage)的高度容错机制
  3. 出错了之后会从出错的位置从新计算,而不会导致重复计算

上一篇 下一篇

猜你喜欢

热点阅读