数据分析

怎样对数据进行分析—数据分析的六大步骤

2020-02-25  本文已影响0人  有趣的数据

        时下的大数据时代与人工智能热潮,相信很多人都会对数据分析产生很多的兴趣,其实数据分析师是Datician的一种,指的是不同行业中,专门从事行业数据收集,整理,分析,并依据数据做出行业研究、评估和预测的专业人员。

        很多人学习过数据分析的知识,但是当真正接触到项目的时候却不知道怎样去分析了,导致这样的原因主要是没有属于自己的分析框架,没有一个合理的分析步骤。那么数据分析的步骤是什么呢?比较让大众认可的数据分析步骤分为

明确分析的目的和思路,数据收集,数据处理,数据分析,数据展现,报告撰写

六大步骤。只有我们有合理的分析框架时,面对一个数据分析的项目就不会无从下手了。

明确目的和思路

        无论做什么事情,首先我们做的时明确目的,数据分析也不例外。在我们进行一个数据分析的项目时,首先我们要思考一下为什么要进展这个项目,进行数据分析要解决什么问题,只有明确数据分析的目的,才不会走错方向,否则得到的数据就没有什么指导意义。

        明确好数据分析目的,梳理分析思路,并搭建分析框架,把分析目的分解成若干不同的分析要点,即如何具体开展数据分析,需要从那几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑化,确定分析对象、分析方法、分析周期及预算,保证数据分析的结果符合此次分析的目的。

数据收集

        数据收集的按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。常见的数据收集方式主要有以下几种

公司自己的数据库(一般公司都会含有)

市场调查取得的数据

第三方平台提供的API接口数据(专门提供数据服务的公司)

政府官方数据(例如中国统计网等政府性的统计网站)

网络爬虫技术获取的数据

数据处理

        一般地我们收集过来的数据都是杂乱无章的,没有什么规律可言的,所以就需要对采集到的数据进行加工处理,形成合适的数据样式,保证数据的一致性和有效性。一般在工作中数据处理会占用我们大部分的时间

        数据处理的基本目的是从大量的,杂乱无章的数据中抽取到对接下来数据分析有用的数据形式。常见的数据处理方式有数据清洗、数据分组、数据检索、数据抽取等,使用的工具有Excel、SQL、Python、R语言等。

数据分析

        对数据整理完毕之后,就需要对数据进行综合的分析。数据分析方式主要是使用适当的分析方法和工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。

        在确定数据分析思路的阶段,就需要对公司业务、产品和分析工具、模型等都有一定的了解,这样才能更好地驾驭数据,从容地进行分析和研究,常见的分析工具有SPSS、SAS、Python、R语言等,分析模型有回归、分类、聚类、关联、预测等。其实数据分析的重点不是采用什么分析工具和模型而是找到合适的分析工具和模型,从中发现数据中含有的规律。

数据展现

        通过对数据的收集、整理、分析之后,隐藏的数据内部的关系和规律就会逐渐浮现出来,那么通过什么方式展现出这些关系和规律,才能让别人一目了然。一般情况下,是通过表格和图形的方式来呈现出来。多数情况下,人们通常愿意接受图形这样数据展现方式,因为它能更加有效、直观地传递出数据所要表达的观点。

        常用数据图表有饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图、矩阵图等图形,在使用图形展现的情况下需要注意一下几点:

确定图表要表达的主题

找到最合适的那种图表

图表是否可以完整表达数据要展现的观点

报告撰写

        当分析出来最终的结果之后,我们是知道这部分数据展现出来的意义,适用的场景。但是如果想让更多人了解你分析出来的东西,让你的分析成果为众人所熟知,这时就需要一份完美的PPT报告,一个逻辑合理的故事。这样的分析结果才是最完美的。

        一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象,直观地看清楚问题和结论,从而产生思考。

                                                           数据分析的四大误区

1、分析目的不明确,不能为了分析而分析。只有明确目的才能更好的分析

2、缺乏对行业、公司业务的认知,分析结果偏离实际。数据必须和业务结合才有意义,清楚所在行业的整体结构,对行业的上游和下游的经营情况有大致的了解,在根据业务当前的需要,制定发展计划,归类出需要整理的数据,同时,熟悉业务才能看到数据背后隐藏的信息。

3、为了方法而方法,为了工具而工具。只要能解决问题的方法和工具就是好的方法和工具

4、数据本身是客观的,但被解读出来的数据是主观的。同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析

上一篇下一篇

猜你喜欢

热点阅读