[数据知识]DAMA数据管理—数据安全管理

2017-12-31  本文已影响167人  数据师

本篇介绍[数据知识]DAMA数据管理知识体系—数据安全管理篇的学习心得,供大家学习和参考。

[核心要点]

数据安全管理是计划、制定、执行相关安全策略和规程,确保数据和信息资产在使用过程中有恰当的认证、授权、访问和审计等措施。
目标:

概念和活动

数据安全管理的最终目标是保护信息资产符合隐私及保密法规要求,并与业务要求相一致。相关要求来源于:利益相关者的关注、政府法规、特定业务关注、合法访问需求。
数据安全要求和相关规程(4A):认证、授权、访问、审计。

外包项目的数据安全

任何形式的外包都增加了组织风险,工作的责任必然由组织自行承担。需要有严格的风险管理和控制机制,可以通过构建CRUD(创建、读取、更新和删除)矩阵,对业务流程、应用、角色、组织的数据进行信息流的追踪和监管。RACI(执行、负责、咨询、知会)矩阵,对角色职责进行澄清和数据安全管理需求责任划分,明确各方责任和所有权,为整体数据安全策略及其实施提供支持。

综述

[观点解读]

通过对以上内容的学习,"数据小兵"对于要点补充解读如下:
书中强调数据安全管理是计划、制定、执行相关安全策略和规程,确保数据和信息资产在使用过程中有恰当的认证、授权、访问和审计等措施。重点讨论了数据安全的管理方法、要求和相关规程。相关管理活动从定义数据安全需求入手、定义数据安全策略、标准、控制及措施,并应用用户角色、密码标准、访问控制、信息密级以及数据安全审计,从管理角度提出重点管控环节。目的是通过业务战略、业务目标、数据战略的理解,制定数据安全政策、数据机密和保密标准,获得用户成员档案及权限、控制、访问视图,制定常规数据安全审计控制活动等。

"数据小兵"结合近日,2017数博会"大数据安全产业实践高峰论坛"上,全国信息安全标准化技术委员会等部门制定了用于组织机构数据安全能力的评估标准—《大数据安全能力成熟度模型》 该标准由"阿里巴巴"提出,进行扩展。国家提出"大数据安全成熟度"围绕数据全生命周期(数据采集、存储、传输、处理、交换、销毁),在数据安全制度流程、人员能力、组织建设、技术工具四个维度上不断提升企业数据能力,定义了5级:1-非正式执行;2-计划跟踪;3-充分定义;4-量化控制;5-持续优化。其数据安全能力成熟度模型是基于能力成熟度(CMM)思想构建的。成熟度模型对数据生命周期各个阶段的企业数据安全能力进行成熟度等级评价,获得基于数据生命周期的各个阶段的数据安全过程域的四个维度上的能力度量,进而获得组织体的数据安全成熟度状态,遵循"木桶"理论的短板原则,对组织体的数据安全进行综合评价。配套标准可参考《大数据安全能力成熟度测评指南》和《大数据安全能力成熟度提升指南》。
"数据小兵"认为DAMA在数据安全管理方面提出基于计划、制定、执行的过程化数据安全策略是基于PDCA的管控思想,而国家大数据安全能力成熟度的围绕全生命周期与和4个维度的构建,则是从企业数据资产全生命周期的活动与组织体的制度、流程、人员、技术工具角度构建。

[经验体会]

通过本章的学习,"数据小兵"结合自身工作经验,谈一谈理解:
当前,企业信息安全与数据安全管理方面混淆。较多企业仍基于"信息安全管理实用规则ISO/IEC27001"和"国家信息安全保护相关政策"包括:《计算机信息安全保护等级划分准则》(GB 17859-1999,以下简称《划分准则》)、《信息系统安全保护等级定级指南》(GB/T 22240-2008,以下简称《定级指南》)、《信息系统安全等级保护基本要求》(GB/T 22239-2008,以下简称《基本要求》)等技术标准和《信息安全等级保护管理办法》(公通字[2007]43号,以下简称《管理办法》)、《关于开展信息安全等级保护安全建设整改工作的指导意见》(公信安[2009]1429号)等文件,组织开展企业自身的数据安全管理体系构建,对于数据安全管理系统的构建,缺乏深入的理解和认识,还混淆在以上的信息安全体系构建中。相信随着企业数据资产的不断开发和利用,企业对从数据安全管理视角,确保组织内的数据资产在开发、利用的生命周期中有效受控,确保企业数据隐私及保密的利益需求会更为突出,在数据安全管理的能力建设方面CDO首席数据官的职责会更为突出。

以上,观点为"数据小兵"的学习心得体会,不代表官方观点,欢迎小伙伴们提出宝贵的建议,"数据小兵"将非常感激!


打造"数据思维、数据知识、数据实践"的学习和分享环境,期待大家的参与!我们共同学习和进步!
数据小兵 http://www.fuduo.wang

上一篇 下一篇

猜你喜欢

热点阅读