哲学之光

EPR效应,时间演化与多世界图像

2020-11-29  本文已影响0人  JohnMarti

爱因斯坦,波多尔斯基和罗森(名字的首字母是EPR)描述了当两个量子系统相互纠缠时表现出的奇异现象。EPR效应与特定的、实验可实现的带有互补性的量子纠缠形式密切相关。

对于一对处于EPR中的两个量子蛋糕,我们可以测量它的形状或者颜色(但不能同时测量两种性质)。假定我们制造了很多这样的“对”且它们全部相同。如果我们测量一对中的一个量子蛋糕,我们发现它们是方是圆的概率相等,如果我们测量颜色,那么我们会发现是红是蓝的概率相等。

如果我们同时测量两个处于纠缠态的量子蛋糕,有趣的事情就发生了。如果测量两个量子蛋糕的颜色或者两个量子蛋糕的形状,我们发现结果始终完全相同。事实上,一旦测量到一个量子蛋糕是红色,那么之后测量的另一个量子蛋糕也一定是红色。另一方面,如果我们测量一个量子蛋糕的形状,之后再测量另一个量子蛋糕的颜色,两者就没有什么关系。如果测量的第一个量子蛋糕的形状是方形 ,那么第二个量子蛋糕是蓝色或红色的概率相等。

根据量子理论,即使将处于纠缠的两个子系统分离很远且测量几乎是同时的,这些现象依然存在。选择在某处测量影响了另一个位置的子系统的状态。爱因斯坦将它成为“鬼魅般的超距作用”,这似乎需要信息以超光速传播。

但是这样吗?在我知道你的测量结果之前,我不知道会发生什么。当我得到你测量的结果时我获得了有用的信息,但已不是在你测量的那一刻。任何传递你测量结果的信息都必须以比光速慢的某种物理方式传输。

如果进行更深入的思考,这个悖论就不再成立。事实上,让我们再次考虑第二个系统的状态,此时第一个系统已经因为测量而呈现红色。如果我们选择测量第二个量子蛋糕的颜色,我们肯定会得到红色。但正如我们前面讨论的,当引入互补性时,如果我们选择测量量子蛋糕的形状,当它处于“红色”状态时,我们测量得到方形或圆形的概率相等。因此,EPR的结果非但没有引入悖论,反而是逻辑的必然。从本质上讲,这只是对互补性的重新包装。

相距很远的两件事是相互关联的,这也不是悖论。毕竟,如果我把一副手套的每一只都放进盒子里,然后寄到地球的另一边,我应该不会感到惊讶,通过观察一个盒子里的手套,我可以确定另一个盒子里手套是左手还是右手。类似地,在所有已知的情况中,当EPR每一个子系统很接近时,它们之间的关联必须被记下来,这些关联有可能在两者相互远离的过程中保留下来。同样,EPR的的怪异之处不是像这样的关联,而是它可能以互补性的形式体现出来。

--------~----------

时间演化与多世界图像

因为纠缠,我们不可能给多个量子蛋糕都指定唯一的、独立的状态。类似的考虑也适用于单个量子蛋糕在时间上的演化。

当我们不可能在每一时刻给我们的系统分配一个确定的状态,我们说我们有“纠缠的历史”。类似于我们通过消除一些可能性来获得传统的纠缠,我们可以通过测量所发生事件的部分信息来创建纠缠历史。在最简单的纠缠历史中,我们只有一个量子蛋糕,我们在两个不同的时间测量它。我们可以想象这样的情况:在两个时间确定量子蛋糕的形状都是正方形的,或者在两个时间都是圆形的,但是我们的测量无法确定是上面两种情况的哪种(测量只获得部分信息)。这是上述最简单的纠缠的时域版本。

我们使用一个稍微复杂一点的方法,我们可以在这个系统中增加互补性,同时在某种情况下显示出“多世界”的特征。我们的量子蛋糕可能预先处于红色状态,并且在随后的时间被测到处于蓝色状态。在上面的简单例子中,我们不能在中间时间一致确定量子蛋糕的颜色属性,它也没有确定的形状。这类历史以有限但精确可控的方式展现了多世界图像的特征。一个确定的状态可以先分裂成不同的历史轨迹,然后再重新合成到一个确定的态上。

埃尔温·薛定谔是量子理论的奠基人之一,但他对量子理论的正确性深表怀疑,他强调,量子系统的演化会让被测量的态具有非常不同的性质。他著名的“薛定谔猫”态,把量子不确定性扩展到猫的死亡问题上。在测量之前,正如我们在例子中所看到的,我们不能将活(或死)的状态赋予给猫。

日常用语不适合描述量子互补性,部分原因是互补性并不来自于日常经验。根据猫的生和死的不同,猫与周围的空气分子及其他物体发生不同的相互作用。因此,测量是自发进行的,它决定了猫的生与死。但纠缠历史所描述的量子蛋糕,才是真正的薛定谔猫。要想完整描述它们,在演化过程中的时间点,我们需要考虑两个互不相容的性质——轨迹。

在可控实验中实现纠缠历史是十分微妙的,因为它需要我们收集有关量子蛋糕的部分信息。传统的量子测量通常在同一时间收集完整的信息,例如,它们确定一个量子蛋糕的形状或颜色,而不是整体系统的部分信息。但这是可以做到的。这样,我们就可以给量子理论中“多世界”的涌现给出明确的数学和实验意义,并研究它的实质。

作者:Frank Wilczek

审校:xux

上一篇下一篇

猜你喜欢

热点阅读