[Python/R语言] 用R和python解决数据分析120题
2020-04-14 本文已影响0人
半为花间酒
转载请注明:陈熹 chenx6542@foxmail.com (简书号:半为花间酒)
若公众号内转载请联系公众号:早起Python
题源:
公众号 早起python 《Pandas进阶修炼120题》数据分析120题系列:
为什么出这个专题:
R语言和pandas都是数据处理的重要工具
而二者的高下争论时有存在
我相信对于数据而言没有绝对的孰优孰劣
需要做的应该是在必要时权衡最合适的办法感谢 公众号
早起python
提供数据分析120题
这些题目是一个契机
帮助我比较了两种语言处理不同问题的共性
当然也发现了各自的灵活和缺陷它们覆盖多数数据分析初期可能遇到的问题
无论是对R语言还是对python技能的提升
相信都有很大帮助(陈熹 2020年4月)
- python解法
import numpy as np
import pandas as pd
df = pd.DataFrame(data)
# 假如是直接创建
df = pd.DataFrame({
"grammer": ["Python","C","Java","GO",np.nan,"SQL","PHP","Python"],
"score": [1,2,np.nan,4,5,6,7,10]})
- R解法
# R中没有字典概念,故直接创建dataframe/tibble
#> 第一种
df <- data.frame(
"grammer" = c("Python","C","Java","GO",NA,"SQL","PHP","Python"),
"score" = c(1,2,NA,4,5,6,7,10)
)
#> 第二种
library(tibble)
df <- tibble(
"grammer" = c("Python","C","Java","GO",NA,"SQL","PHP","Python"),
"score" = c(1,2,NA,4,5,6,7,10)
)
# 也可以用tribble横向建tibble
pandas / R
- python解法
#> 1
df[df['grammer'] == 'Python']
#> 2
results = df['grammer'].str.contains("Python")
results.fillna(value=False,inplace = True)
df[results]
- R解法
df[which(df$grammer == 'Python'),]
pandas / R
- python解法
df.columns
# Index(['grammer', 'score'], dtype='object')
- R解法
names(df)
# [1] "grammer" "score"
- python解法
df.rename(columns={'score':'popularity'}, inplace = True)
- R解法
df <- df %>%
rename(popularity = score)
- python解法
df['grammer'].value_counts()
- R解法
# 神方法table
table(df$grammer)
pandas / R
- python解法
# pandas里有一个插值方法,就是计算缺失值上下两数的均值
df['popularity'] = df['popularity'].fillna(df['popularity'].interpolate())
- R解法
暂时没想到其他方法,用的是Hmisc包
library(Hmisc)
index <- which(is.na(df$popularity))
df$popularity <- impute(df$popularity,
(unlist(df[index-1, 2] +
df[index+1, 2]))/2)
pandas / R
- python解法
df[df['popularity'] > 3]
- R解法
df %>%
filter(popularity > 3)
# 等价于
df[df$popularity > 3,] # 这种方法跟pandas很相似
pandas / R
- python解法
df.drop_duplicates(['grammer'])
- R解法
df[!duplicated(df$grammer),]
pandas / R
- python解法
df['popularity'].mean()
# 4.75
- R解法
#> 第一种
mean(df$popularity)
# [1] 4.75
#> 第二种
df %>%
summarise(mean = mean(popularity))
## A tibble: 1 x 1
# mean
# <dbl>
# 1 4.75
- python解法
df['grammer'].to_list()
# ['Python', 'C', 'Java', 'GO', nan, 'SQL', 'PHP', 'Python']
- R解法
R中的list和python的list意义完全不同
接近python的list概念的应该是R中的vector
实际上这题目的就是降维,用的反而是unlist
unlist(df$grammer)
# [1] "Python" "C" "Java" "GO" NA "SQL" "PHP" "Python"
- python解法
python还有其他处理EXCEL的包比如 openpyxl、xlrd、xlwt、xluntils等
本例用pandas的写入方法解决
df.to_excel('filename.xlsx')
- R解法
R对EXCEL文件不太友好
第一种方法:利用readr包转为csv再用EXCEL打开
文件本质依然是csv
library(readr)
write_excel_csv(df,'filename.csv')
第二种方法:利用openxlsx包
openxlsx::write.xlsx(df,'filename.xlsx')
也可以用xlsx包,但需要先配置JAVA环境
确保JAVA配置到环境变量中并命名为JAVA_HOME
Sys.getenv("JAVA_HOME")
install.packages('rJava')
install.packages("xlsxjars")
library(rJava)
library(xlsxjars)
xlsx::write.xlsx(df,'filename.xlsx')
- python解法
df.shape
# (8, 2)
- R解法
dim(df)
# [1] 8 2
- python解法
df[(df['popularity'] > 3) & (df['popularity'] < 7)]
- R解法
library(dplyr)
df %>%
filter(popularity > 3 & popularity <7)
# 等价于
df[(df$popularity > 3) & (df$popularity <7),]
pandas / R
- python解法
temp = df['popularity']
df.drop(labels=['popularity'], axis=1,inplace = True)
df.insert(0, 'popularity', temp)
- R解法
df <- df %>%
select(popularity,everything())
pandas / R
- python解法
df[df['popularity'] == df['popularity'].max()]
- R解法
df %>%
filter(popularity == max(popularity))
# 同理也有类似pandas的方法
df[df$popularity == max(df$popularity),]
pandas / R
- python解法
df.tail()
- R解法
# R中head和tail默认是6行,可以指定数字
tail(df,5)
pandas / R
- python解法
df = df.drop(labels=df.shape[0]-1)
- R解法
df[-dim(df)[1],]
# 等价于
df %>%
filter(rownames(df) != max(rownames(df)))
pandas / R
- python解法
row = {'grammer':'Perl','popularity':6.6}
df = df.append(row,ignore_index=True)
- R解法
row <- c(6.6,'Perl') # 需要和列的位置对应
# 或者建数据框
row <- data.frame(
"grammer" = c("Perl"),
"popularity" = c(6.6)
)
df <- rbind(df,row)
pandas / R
- python解法
df.sort_values("popularity",inplace=True)
- R解法
df <- df %>%
arrange(popularity)
pandas / R
从本题开始将grammer列中的缺失值替换为R
- python解法
df['grammer'] = df['grammer'].fillna('R')
df['len_str'] = df['grammer'].map(lambda x: len(x))
- R解法
library(Hmisc)
library(stringr)
df$grammer <- impute(df$grammer,'R')
str_length(df$grammer)
df$len_str <- str_length(df$grammer)
pandas / R