【iOS】GCD队列、同步异步
GCD的队列有两种,一种是串行队列,一种是并发队列。
串行队列:
任务按往队列里的添加先后顺序执行,先进先出(FIFO),前一个任务执行完再开始执行下一个任务。(我们开发中主线程队列就是一个串行队列,所以我们经常在主线程写的一般任务(不考虑多线程),都是顺序执行的)。
注意一个串行队列里只有一个线程。
并发队列:
任务会在这个队列中新开线程,并发同时执行(无序)。
我们GCD使用常伴有dispatch_sync和dispatch_async,这就是同步执行和异步执行。
同步和异步
同步执行:任务都在当前线程中执行,执行过程中会阻塞当前线程。
异步执行:任务会开辟新的线程,并在新的线程中执行,不会阻塞当前线程。
注意
1.同步执行没有开启新线程的能力, 所有的任务都只能在当前线程执行
2.异步执行有开启新线程的能力, 但是, 有开启新线程的能力, 也不一定会利用这种能力, 也就是说, 异步执行是否开启新线程, 需要具体问题具体分析
3.并发队列中的任务会放到不同的线程中去执行.
4.串行队列中的任务只会放到同一线程中去执行.
基本介绍算是完了,队列有2种,执行方式有2种,那么他们互相组合会是什么情况呢?
很显然,它们可以组合成4种情况:
1).串行队列同步执行:任务都在当前线程执行(同步),并且顺序执行(串行)
2).串行队列异步执行:任务都在开辟的新的子线程中执行(异步),并且顺序执行(串行)
3).并发队列同步执行:任务都在当前线程执行(同步),但是是顺序执行的(并没有体现并发的特性)
4).并发队列异步执行:任务在开辟的多个子线程中执行(异步),并且是同时执行的(并发)
验证:
1.串行队列同步执行
代码直接写在viewDidLoad里
dispatch_queue_t queue = dispatch_queue_create("serialQueue", DISPATCH_QUEUE_SERIAL);
dispatch_sync(queue, ^{
NSLog(@"task1");
NSLog(@"task1---%@",[NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"task2");
NSLog(@"task2---%@",[NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"task3");
NSLog(@"task3---%@",[NSThread currentThread]);
});
NSLog(@"task4");
NSLog(@"task4---%@",[NSThread currentThread]);
结果
2018-01-29 11:26:00.511 GCD[72214:3984485] task1
2018-01-29 11:26:00.512 GCD[72214:3984485] task1---{number = 1, name = main}
2018-01-29 11:26:00.512 GCD[72214:3984485] task2
2018-01-29 11:26:00.512 GCD[72214:3984485] task2---{number = 1, name = main}
2018-01-29 11:26:00.512 GCD[72214:3984485] task3
2018-01-29 11:26:00.513 GCD[72214:3984485] task3---{number = 1, name = main}
2018-01-29 11:26:00.513 GCD[72214:3984485] task4
2018-01-29 11:26:00.513 GCD[72214:3984485] task4---{number = 1, name = main}
分析:任务是在当前线程(当前是主线程)顺序执行的。这也验证了
串行队列同步执行:任务都在当前线程执行(同步),并且顺序执行(串行)
这里需要注意的是代码直接在viewDidLoad里写的,主队列也是一个串行队列,但在主线程中使用主队列同步执行会造成死锁,这里不讨论这个。另外,若在viewDidLoad新开一个子线程,去执行代码,结果是同样可以验证的:
[NSThread detachNewThreadSelector:@selector(threadAction) toTarget:self withObject:nil];
-(void)threadAction{
dispatch_queue_t queue = dispatch_queue_create("serialQueue", DISPATCH_QUEUE_SERIAL);
dispatch_sync(queue, ^{
NSLog(@"task1");
NSLog(@"task1---%@",[NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"task2");
NSLog(@"task2---%@",[NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"task3");
NSLog(@"task3---%@",[NSThread currentThread]);
});
NSLog(@"task4");
NSLog(@"task4---%@",[NSThread currentThread]);
}·
2018-01-29 11:27:31.056 GCD[72230:3986823] task1
2018-01-29 11:27:31.056 GCD[72230:3986823] task1---{number = 3, name = (null)}
2018-01-29 11:27:31.057 GCD[72230:3986823] task2
2018-01-29 11:27:31.057 GCD[72230:3986823] task2---{number = 3, name = (null)}
2018-01-29 11:27:31.058 GCD[72230:3986823] task3
2018-01-29 11:27:31.059 GCD[72230:3986823] task3---{number = 3, name = (null)}
2018-01-29 11:27:31.059 GCD[72230:3986823] task4
2018-01-29 11:27:31.059 GCD[72230:3986823] task4---{number = 3, name = (null)}
2.串行队列异步执行
dispatch_queue_t queue = dispatch_queue_create("serialQueue", DISPATCH_QUEUE_SERIAL);
dispatch_async(queue, ^{
NSLog(@"task1");
NSLog(@"task1---%@",[NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"task2");
NSLog(@"task2---%@",[NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"task3");
NSLog(@"task3---%@",[NSThread currentThread]);
});
NSLog(@"task4");
NSLog(@"task4---%@",[NSThread currentThread]);
2018-01-29 11:30:19.254 GCD[72269:3990336] task1
2018-01-29 11:30:19.254 GCD[72269:3990288] task4
2018-01-29 11:30:19.254 GCD[72269:3990288] task4---{number = 1, name = main}
2018-01-29 11:30:19.254 GCD[72269:3990336] task1---{number = 3, name = (null)}
2018-01-29 11:30:19.255 GCD[72269:3990336] task2
2018-01-29 11:30:19.255 GCD[72269:3990336] task2---{number = 3, name = (null)}
2018-01-29 11:30:19.255 GCD[72269:3990336] task3
2018-01-29 11:30:19.255 GCD[72269:3990336] task3---{number = 3, name = (null)}
2018-01-29 11:32:01.533 GCD[72278:3992351] task4
2018-01-29 11:32:01.533 GCD[72278:3992391] task1
2018-01-29 11:32:01.534 GCD[72278:3992351] task4---{number = 1, name = main}
2018-01-29 11:32:01.534 GCD[72278:3992391] task1---{number = 3, name = (null)}
2018-01-29 11:32:01.534 GCD[72278:3992391] task2
2018-01-29 11:32:01.534 GCD[72278:3992391] task2---{number = 3, name = (null)}
2018-01-29 11:32:01.534 GCD[72278:3992391] task3
2018-01-29 11:32:01.535 GCD[72278:3992391] task3---{number = 3, name = (null)}
分析:主线程异步调用,我们先分析加到队列里的task任务1、2、3,确实都是在开辟了的新线程{number = 3, name = (null)}上顺序执行的,关于task4,由于是异步的,它也没加入队列queue,啥时候输出就看电脑心情了...验证结果:
串行队列异步执行:任务都在开辟的新的子线程中执行(异步),并且顺序执行(串行)
这里需要注意,由于新创建了串行线程,所以任务会在新开辟的线程上执行,若是直接在主队列异步调用,任务执行都在主线程上。
3.并发队列同步执行
dispatch_queue_t queue = dispatch_queue_create("concurrentQueue", DISPATCH_QUEUE_CONCURRENT);
dispatch_sync(queue, ^{
NSLog(@"task1");
NSLog(@"task1---%@",[NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"task2");
NSLog(@"task2---%@",[NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"task3");
NSLog(@"task3---%@",[NSThread currentThread]);
});
NSLog(@"task4");
NSLog(@"task4---%@",[NSThread currentThread]);
2018-01-29 11:40:40.274 GCD[72316:3998532] task1
2018-01-29 11:40:40.274 GCD[72316:3998532] task1---{number = 1, name = main}
2018-01-29 11:40:40.274 GCD[72316:3998532] task2
2018-01-29 11:40:40.274 GCD[72316:3998532] task2---{number = 1, name = main}
2018-01-29 11:40:40.274 GCD[72316:3998532] task3
2018-01-29 11:40:40.275 GCD[72316:3998532] task3---{number = 1, name = main}
2018-01-29 11:40:40.275 GCD[72316:3998532] task4
2018-01-29 11:40:40.275 GCD[72316:3998532] task4---{number = 1, name = main}
分析:任务是在当前线程(是主线程没有开辟新线程)顺序执行的,跟串行同步一样,虽是并发队列,却不能并发。得到验证结果:
并发队列同步执行:任务都在当前线程执行(同步),但是是顺序执行的(并没有体现并发的特性)
4.并发队列异步执行
dispatch_queue_t queue = dispatch_queue_create("concurrentQueue", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
NSLog(@"task1");
NSLog(@"task1---%@",[NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"task2");
NSLog(@"task2---%@",[NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"task3");
NSLog(@"task3---%@",[NSThread currentThread]);
});
NSLog(@"task4");
NSLog(@"task4---%@",[NSThread currentThread]);
2018-01-29 11:47:23.235 GCD[72367:4005184] task2
2018-01-29 11:47:23.235 GCD[72367:4005156] task4
2018-01-29 11:47:23.235 GCD[72367:4005183] task1
2018-01-29 11:47:23.235 GCD[72367:4005186] task3
2018-01-29 11:47:23.236 GCD[72367:4005156] task4---{number = 1, name = main}
2018-01-29 11:47:23.236 GCD[72367:4005184] task2---{number = 3, name = (null)}
2018-01-29 11:47:23.236 GCD[72367:4005183] task1---{number = 4, name = (null)}
2018-01-29 11:47:23.236 GCD[72367:4005186] task3---{number = 5, name = (null)}
2018-01-29 11:48:23.070 GCD[72375:4006982] task1
2018-01-29 11:48:23.070 GCD[72375:4006934] task4
2018-01-29 11:48:23.070 GCD[72375:4006984] task3
2018-01-29 11:48:23.070 GCD[72375:4006981] task2
2018-01-29 11:48:23.070 GCD[72375:4006934] task4---{number = 1, name = main}
2018-01-29 11:48:23.070 GCD[72375:4006982] task1---{number = 3, name = (null)}
2018-01-29 11:48:23.071 GCD[72375:4006984] task3---{number = 4, name = (null)}
2018-01-29 11:48:23.071 GCD[72375:4006981] task2---{number = 5, name = (null)}
2018-01-29 11:48:42.930 GCD[72380:4007604] task4
2018-01-29 11:48:42.930 GCD[72380:4007680] task2
2018-01-29 11:48:42.930 GCD[72380:4007683] task1
2018-01-29 11:48:42.930 GCD[72380:4007681] task3
2018-01-29 11:48:42.930 GCD[72380:4007604] task4---{number = 1, name = main}
2018-01-29 11:48:42.930 GCD[72380:4007680] task2---{number = 3, name = (null)}
2018-01-29 11:48:42.930 GCD[72380:4007683] task1---{number = 4, name = (null)}
2018-01-29 11:48:42.930 GCD[72380:4007681] task3---{number = 5, name = (null)}
分析:先看task4吧,没有加入队列,所以肯定是在主线程执行的,由于异步,啥时候执行还是要看电脑心情...好了,言归正传,我们看加入到并发队列里的任务1、2、3,三个运行结果证明它们是在不同的线程中无序执行的,每个任务都开辟了新的线程去执行,并且执行顺序是无序的,体现了并发的特性。所以我们经常也是使用这种方式做一些需求。验证结果:
并发队列异步执行:任务在开辟的多个子线程中执行(异步),并且是同时执行的(并发)
最后总结一下:理解了串行并发和同步异步,我们的开发会变得更加高效,逻辑也会更加清晰,若你暂时没没弄懂,可以再回上去看看理论,跟着理论敲敲代码来加深理解