34. Search for a Range
2017-09-30 本文已影响0人
Al73r
题目
Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
分析
在有序数组中查找目标存在的范围,直接用STL中的lower_bound()和upper_bound()两个函数撸两下就过了。
实现一
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
auto p1=lower_bound(nums.begin(), nums.end(), target);
if(p1==nums.end() || *p1!=target) return {-1, -1};
auto p2=upper_bound(nums.begin(), nums.end(), target);
return {p1-nums.begin(), p2-nums.begin()-1};
}
};
思考一
感觉这样太简单了,这题应该主要就是考察对于二分查找的理解,所以决定再手撸一遍二分查找。
实现二
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
if(nums.empty()) return {-1, -1};
int start=0, end=nums.size()-1;
while(start<end){
int mid = (start + end) / 2;
if(nums[mid]>=target)
end = mid;
else
start = mid+1;
}
if(nums[start]!=target) return {-1, -1};
int a=start;
start=0, end=nums.size()-1;
while(start<end){
int mid = (start + end) / 2;
if(nums[mid]>=target+1)
end = mid;
else
start = mid+1;
}
if(nums[start]==target) return {a, start};
return {a, start-1};
}
};
思考二
手撸成功,完成了上一题中所要做的改进,排名也有所提升。