第一门课程:Introduction to Data Scien
2018-01-03 本文已影响0人
英天
第一周 Python Fundamentals
- 从字段中取出Christopher
x = 'Dr. Christopher Brooks'
print(x[4:15])
- 保留Dr.和last name. use function and map
people = ['Dr. Christopher Brooks', 'Dr. Kevyn Collins-Thompson', 'Dr. VG Vinod Vydiswaran', 'Dr. Daniel Romero']
def split_title_and_name(person):
title = person.split()[0]
lastname = person.split()[-1]
return '{} {}'.format(title, lastname)
list(map(split_title_and_name, people))
- list comparation
def times_tables():
lst = []
for i in range(10):
for j in range (10):
lst.append(i*j)
return lst
times_tables() == [j*i for i in range(10) for j in range(10)]
#the last line has the same function as the first
第二周 Basic Data Processing with Pandas
The DataFrame Data Structure
- 形成一个表格
import pandas as pd
purchase_1 = pd.Series({'Name': 'Chris',
'Item Purchased': 'Dog Food',
'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
'Item Purchased': 'Kitty Litter',
'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
'Item Purchased': 'Bird Seed',
'Cost': 5.00})
df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2'])
df.head()
- 修改表格中某一列的数值
purchase_1 = pd.Series({'Name': 'Chris',
'Item Purchased': 'Dog Food',
'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
'Item Purchased': 'Kitty Litter',
'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
'Item Purchased': 'Bird Seed',
'Cost': 5.00})
df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2'])
df['Cost'] *= 0.8
print(df)
- 读取CSV文件
import pandas as pd
df = pd.read_csv('olympics.csv')
df.head()
- 筛选出价格大于3的值
purchase_1 = pd.Series({'Name': 'Chris',
'Item Purchased': 'Dog Food',
'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
'Item Purchased': 'Kitty Litter',
'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
'Item Purchased': 'Bird Seed',
'Cost': 5.00})
df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2'])
df['Name'][df['Cost']>3]
Missing value
- read from csv
import pandas as pd
df = pd.read_csv('log.csv')
df
- set time column as index and sort according to it
df = df.set_index('time')
df = df.sort_index()
df
- set two index :time and user
df = df.reset_index()
df = df.set_index(['time', 'user'])
df
- fill missing value
df = df.fillna(method='ffill')
df.head()