神经网络与深度学习程序员

pytorch学习3:神经网络流程

2018-05-07  本文已影响15人  bdb87b292706

现在试着用pytorch搭建一个手写字母识别的网络,这是一个很经典的demo,网络结构如下:


网络结构

流程包括以下几步
1.定义一个神经网络
2.迭代输入训练数据
3.前向传播
4.计算loss
5.反向传播
6.更新网络参数(weight = weight - learning_rate * gradient,weight往梯度下降的方向增加)

首先定义网络:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features
net = Net()
print(net)

输出为:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

可以通过调用.parameters()来查看其中一层的参数:

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight

输出为

10
torch.Size([6, 1, 5, 5])

我们尝试给网络一个随机的输入:

input = torch.randn(1, 1, 32, 32)

这里四个参数定义了一个四维的矩阵,如果按灰度图像来看,第一个相当于图像的张数,第二个相当与图像的通道数,灰度为1,rgb为3,后面两个相当于图像的尺寸。
通过网络:

out = net(input)
print(out)

之后可以得到:

tensor([[-0.0089, -0.0514,  0.0059,  0.1412, -0.1543,  0.0494, -0.0966,
         -0.1150, -0.0986, -0.1103]])

下面计算loss,这里使用MSEloss:

output = net(input)
target = torch.arange(1, 11)  # a dummy target, for example
target = target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()

loss = criterion(output, target)
print(loss)

得到输出:

tensor(39.2273)

整个网络的前向过程如下所示:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
      -> view -> linear -> relu -> linear -> relu -> linear
      -> MSELoss
      -> loss

通过使用loss.backward()函数实现梯度的反向传播:

net.zero_grad()     # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

可以得到输出为:

conv1.bias.grad before backward
tensor([ 0.,  0.,  0.,  0.,  0.,  0.])
conv1.bias.grad after backward
tensor([ 0.0501,  0.1040, -0.1200,  0.0833,  0.0081,  0.0120])

关于pytorch中的各个层的详细介绍看这里

关于梯度下降算法,需要使用torch.optim包,如下所示:

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

步骤为首先设置梯度下降的方式(支持SGD, Nesterov-SGD, Adam, RMSProp等),并设置学习率,在每一次迭代中首先清空梯度计算的缓存,然后输入计算数据,计算loss,反向传播,调用.step()完成参数的更新。

上一篇下一篇

猜你喜欢

热点阅读