认识分布式架构

2018-01-15  本文已影响121人  codersm

认识分布式架构

随着计算机系统规模变得越来越大,将所有的业务单元集中部署在一个或若干个大型机上的体系结构,已经越来越不能满足当今计算机系统,尤其是大型互联网系统的快速发展,各种灵活多变的系统架构模型层出不穷。分布式的处理方式越来越受到业界的青睐——计算机系统正在经历一场前所未有的从集中式向分布式架构的变革。

集中式与分布式

集中式系统

所谓的集中式系统就是指由一台或多台主计算机组成中心节点,数据集中存储于这个中心节点中,并且整个系统的所有业务单元都集中部署在这个中心节点上,系统的所有功能均由其集中处理。

集中式系统的最大的特点就是部署结构非常简单,底层一般采用从IBM、HP等厂商购买到的昂贵的大型主机。因此无需考虑如何对服务进行多节点的部署,也就不用考虑各节点之间的分布式协作问题。但是,由于采用单机部署。很可能带来系统大而复杂、难于维护、发生单点故障(单个点发生故障的时候会波及到整个系统或者网络,从而导致整个系统或者网络的瘫痪)、扩展性差等问题。

分布式系统

分布式系统是一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅通过消息传递进行通信和协调的系统。简单来说就是一群独立计算机集合共同对外提供服务,但是对于系统的用户来说,就像是一台计算机在提供服务一样。分布式意味着可以采用更多的普通计算机(相对于昂贵的大型机)组成分布式集群对外提供服务。计算机越多,CPU、内存、存储资源等也就越多,能够处理的并发访问量也就越大。

从分布式系统的概念中我们知道,各个主机之间通信和协调主要通过网络进行,所以,分布式系统中的计算机在空间上几乎没有任何限制,这些计算机可能被放在不同的机柜上,也可能被部署在不同的机房中,还可能在不同的城市中,对于大型的网站甚至可能分布在不同的国家和地区。但是,无论空间上如何分布,一个标准的分布式系统应该具有以下几个主要特征:

分布式系统面临的问题

分布式事务

在单机数据库中,我们很容易能够实现一套满足ACID特性的事务处理系统,但在分布式数据库中,数据分散在不同的机器上,如何对这些数据进行分布式的事务处理具有非常大的挑战。但是在分布式计算领域,为了保证分布式应用程序的可靠性,分布式事务是无法回避的。

分布式事务是指事务的参与者、支持的服务器、资源服务器以及事务管理器分别位于分布式系统的不同节点之上。通常一个分布式事务中会涉及对多个数据源或业务系统的操作。一个最典型的分布式事务场景:一个跨银行的转账操作涉及调用两个异地的银行服务,其中一个是本地银行提供的取款服务,另一个则是目标银行提供的存款服务,这两个服务本身是无状态并且是互相独立的,共同构成了一个完整的分布式事务。

对于一个高访问量、高并发的互联网分布式系统来说,如果我们期望实现一套严格满足ACID特性的分布式事务,很可能出现的情况就是在系统的可用性和严格一致性之间出现冲突——因为当我们要求分布式系统具有严格一致性时,很可能就需要牺牲掉系统的可用性。但毋庸置疑的一点是,可用性又是一个所有消费者不允许我们讨价还价的系统属性,比如淘宝网这样在线网站就要求能够7*24小时不间断地对外提供服务,而对于一致性,则更加是所有消费者对于一个软件系统的刚需。因此,在可用性和一致性之间永远无法存在一个两全其美的方案,于是如何构建一个兼顾可用性和一致性的分布式系统成为了无数工程师探讨的难题,出现了诸如CAP和BASE这样的分布式系统经典理论。

CAP定理

CAP理论告诉我们,一个分布式系统不可能同时满足一致性(C:Consistency)、可用性(A:Availability)和分区容错性(P:Partition tolerance)这三个基本需求,最多只能同时满足其中的两项。

在进行对CAP定理的应用时,我们就需要抛弃其中的一项,下表是抛弃CAP定理中任意一项特性的场景说明。

放弃CAP定理 说明
放弃P 如果希望能够避免系统出现分区容错性问题,一种较为简单的做法是将所有的数据都放在一个分布式节点上。这样的做法虽然无法100%地保证系统不会出错,但至少不会碰到由于网络分区带来的负面影响。但同时需要注意的是,放弃P的同时也就意味着放弃类系统的可扩展性
放弃A 放弃可用性,一旦系统遇到网络分区或其他故障时,那么受到影响的服务需要等待一定的时间,因此在等待期间系统无法对外提供正常的服务,即不可用
放弃C 事实上,放弃一致性指的是放弃数据的强一致性,而保留数据的最终一致性。这样的系统无法保证数据保持实时的一致性,但是能够承诺的是,数据最终会达到一个一致的状态。这就引入了一个时间窗口的概念,具体多久能够达到数据一致取决于系统的设计,主要包括数据副本在不同节点之间的复制时间长短

对于一个分布式系统,分区容错性可以说是一个最基本的要求。既然是分布式系统,那么分布式系统中的组件必然需要被部署到不同的节点,否则也就无所谓分布式系统了,因此必然出现子网络。而对于分布式系统而言,网络问题又是一个必定会出现的异常情况,因此分区容错性也就称为了一个分布式系统必然需要面对和解决的问题。因此系统架构设计师往往需要把精力花在如何根据业务特点在C(一致性)和A(可用性)之间寻求平衡。

BASE理论

BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的简写,是由eBay的架构师提出的。BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于CAP定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。

参考资料

从Paxos到Zookeeper分布式一致性原理与实践

上一篇 下一篇

猜你喜欢

热点阅读