Python语言学习

Python数据可视化(十二):面积图绘制

2021-06-24  本文已影响0人  Davey1220

使用matplotlib包绘制面积图

# libraries
import numpy as np
import matplotlib.pyplot as plt

# Create data
x=range(1,6)
y=[1,4,6,8,4]
# Area plot
# 绘制基础面积图
plt.fill_between(x, y)

# Show the graph
plt.show()
image.png
# create data
x=range(1,15)
y=[1,4,6,8,4,5,3,2,4,1,5,6,8,7]

# Change the color and its transparency
plt.fill_between( x, y, color="skyblue", alpha=0.4)

# Show the graph
plt.show()
image.png
# Same, but add a stronger line on top (edge)
plt.fill_between( x, y, color="skyblue", alpha=0.2)
plt.plot(x, y, color="Slateblue", alpha=0.6)
# See the line plot function to learn how to customize the plt.plot function

# Show the graph
plt.show()
image.png
# Change the style of plot
plt.style.use('seaborn-darkgrid')

# Make the same graph
plt.fill_between( x, y, color="skyblue", alpha=0.3)
plt.plot(x, y, color="red")

# Add titles
plt.title("An area chart", loc="left")
plt.xlabel("Value of X")
plt.ylabel("Value of Y")

# Show the graph
plt.show()
image.png

使用seaborn包绘制面积图

# libraries
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

# Create a dataset
my_count=["France","Australia","Japan","USA","Germany","Congo","China","England","Spain","Greece","Marocco","South Africa","Indonesia","Peru","Chili","Brazil"]
df = pd.DataFrame({
"country":np.repeat(my_count, 10),
"years":list(range(2000, 2010)) * 16,
"value":np.random.rand(160)
})

df.head()
country years value
0 France 2000 0.622723
1 France 2001 0.665459
2 France 2002 0.048021
3 France 2003 0.679705
4 France 2004 0.135426
# Create a grid : initialize it
g = sns.FacetGrid(df, col='country', hue='country', col_wrap=4, )

# Add the line over the area with the plot function
g = g.map(plt.plot, 'years', 'value')

# Fill the area with fill_between
g = g.map(plt.fill_between, 'years', 'value', alpha=0.2).set_titles("{col_name} country")

# Control the title of each facet
g = g.set_titles("{col_name}")

# Add a title for the whole plot
plt.subplots_adjust(top=0.92)
g = g.fig.suptitle('Evolution of the value of stuff in 16 countries')

# Show the graph
plt.show()
image.png

绘图堆叠面积图

# libraries
import numpy as np
import matplotlib.pyplot as plt

# Your x and y axis
x=range(1,6)
y=[ [1,4,6,8,9], [2,2,7,10,12], [2,8,5,10,6] ]
# Basic stacked area chart.
plt.stackplot(x,y, labels=['A','B','C'])
plt.legend(loc='upper left')
plt.show()
image.png
# Your x and y axis
x = range(1,6)
y = [ [10,4,6,5,3], [12,2,7,10,1], [8,18,5,7,6] ]

# use a known color palette
pal = sns.color_palette("Set1")
# 设置colors=pal参数自定义颜色画板
plt.stackplot(x,y, labels=['A','B','C'], colors=pal, alpha=0.4 )
plt.legend(loc='upper right')
plt.show()
image.png
# Make data
data = pd.DataFrame({  'group_A':[1,4,6,8,9], 'group_B':[2,24,7,10,12], 'group_C':[2,8,5,10,6], }, index=range(1,6))

# We need to transform the data from raw data to percentage (fraction)
data_perc = data.divide(data.sum(axis=1), axis=0)
data_perc.head()
group_A group_B group_C
1 0.200000 0.400000 0.400000
2 0.111111 0.666667 0.222222
3 0.333333 0.388889 0.277778
4 0.285714 0.357143 0.357143
5 0.333333 0.444444 0.222222
# Make the plot
plt.stackplot(range(1,6),  data_perc["group_A"],  data_perc["group_B"],  data_perc["group_C"], labels=['A','B','C'])
plt.legend(loc='upper left')
plt.margins(0,0)
plt.title('100 % stacked area chart')
plt.show()
image.png
# 使用panda包绘制堆叠面积图
# Dataset
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

# plot
df.plot.area()

# show the graph
plt.show()
image.png

参考来源:https://www.python-graph-gallery.com/area-plot/

上一篇下一篇

猜你喜欢

热点阅读