Text classification-FastText
1.Getting and preparing the data
每行包括:label,句子
>> head cooking.stackexchange.txt
__label__sauce __label__cheese How much does potato starch affect a cheese sauce recipe?__label__food-safety __label__acidity Dangerous pathogens capable of growing in acidic environments __label__cast-iron __label__stove How do I cover up the white spots on my cast iron stove?__label__restaurant Michelin Three Star Restaurant; but if the chef is not there__label__knife-skills__label__dicing Without knife skills, how can I quickly and accurately dice vegetables?
在训练之前将数据分为训练集和交叉验证集 4:1
>> wc cooking.stackexchange.txt
15404 169582 1401900 cooking.stackexchange.txt
>> head -n 12404 cooking.stackexchange.txt > cooking.train
>> tail -n 3000 cooking.stackexchange.txt > cooking.valid
2.Our first classifier
训练分类器
>> ./fasttext supervised -input cooking.train -output model_cooking
Read 0M words
Number of words: 14543
Number of labels: 735
Progress: 100.0% words/sec/thread: 90012 lr: 0.000000 loss: 10.222594 ETA: 0h 0m
-input 指示训练集
-output定义在哪里存放model文件
训练的最后会生成 model.bin文件存放分类器
交互式测试分类器:
>> ./fasttext predict model_cooking.bin -
>> Why not put knives in the dishwasher?
__label__baking
>> Why not put knives in the dishwasher?
__label__food-safety
执行交叉验证:
>> ./fasttext test model_cooking.bin cooking.valid
N 3000
P@1 0.138
R@1 0.0595
Number of examples: 3000
precision:P@1
recall:R@1
每5次迭代计算一次precision和recall
>> ./fasttext test model_cooking.bin cooking.valid 5
N 3000
P@5 0.0677
R@5 0.146
Number of examples: 3000
3.Advanced readers: precision and recall
The precision is the number of correct labels among the labels predicted by fastText.
The recall is the number of labels that successfully were predicted, among all the real labels.
4.Making the model better
4.1 preprocessing the data
>>cat cooking.stackexchange.txt | sed -e "s/\([.\!?,'/()]\)/ \1 /g" | tr "[:upper:]" "[:lower:]" > cooking.preprocessed.txt
head -n 12404 cooking.preprocessed.txt > cooking.train
tail -n 3000 cooking.preprocessed.txt > cooking.valid
使用预训练过的数据训练模型:
>> ./fasttext supervised -input cooking.train -output model_cooking
Read 0M words
Number of words: 8952
Number of labels: 735
Progress: 100.0% words/sec/thread: 101142 lr: 0.000000 loss: 11.018550 ETA: 0h 0m
>> ./fasttext test model_cooking.bin cooking.valid
N 3000
P@1 0.172
R@1 0.0744
Number of examples: 3000
4.2 more epochs and larger learning rate
默认情况下fastText 只进行5次迭代
使用 -epoch 自定义迭代次数
>> ./fasttext supervised -input cooking.train -output model_cooking -epoch 25
Read 0M words
Number of words: 8952
Number of labels: 735
Progress: 100.0% words/sec/thread: 92990 lr: 0.000000 loss: 7.257324 ETA: 0h 0m
>> ./fasttext test model_cooking.bin cooking.valid
N 3000
P@1 0.514
R@1 0.222
Number of examples: 3000
加快学习速度--改变learning rate
>> ./fasttext supervised -input cooking.train -output model_cooking -lr 1.0
Read 0M words
Number of words: 8952
Number of labels: 735
Progress: 100.0% words/sec/thread: 91682 lr: 0.000000 loss: 6.346271 ETA: 0h 0m
>> ./fasttext test model_cooking.bin cooking.valid
N 3000
P@1 0.579
R@1 0.25
Number of examples: 3000
4.3 word n-grams
使用bigrams训练模型
>> ./fasttext supervised -input cooking.train -output model_cooking -lr 1.0 -epoch 25 -wordNgrams 2
Read 0M words
Number of words: 8952
Number of labels: 735
Progress: 100.0% words/sec/thread: 93126 lr: 0.000000 loss: 3.139972 ETA: 0h 0m
>> ./fasttexttestmodel_cooking.bin cooking.valid
N 3000
P@1 0.61
R@1 0.264
Number of examples: 3000
提升模型准确率的几种方法:
preprocessing the data ;
changing the number of epochs (using the option-epoch, standard range[5 - 50]) ;
changing the learning rate (using the option-lr, standard range[0.1 - 1.0]) ;
using word n-grams (using the option-wordNgrams, standard range[1 - 5]).
5.Scaling things up
使用 hierarchical softmax可以让模型训练的更快 This can be done with the option -loss hs:
>> ./fasttext supervised -input cooking.train -output model_cooking -lr 1.0 -epoch 25 -wordNgrams 2 -bucket 200000 -dim 50 -loss hs
Read 0M words
Number of words: 8952
Number of labels: 735
Progress: 100.0% words/sec/thread: 2139399 lr: 0.000000 loss: 2.142308 ETA: 0h 0m