程序员二叉树之下iOS开发之常用技术点

堆(heap)

2019-02-01  本文已影响6人  二毛_220d

如何理解“堆”?

堆是一种特殊的树。满足两点要求。

图中1 ,2为大顶堆,图中 3 为小顶堆,图中 4不为堆。

如何实现一个堆?

堆中插入元素:将元素插入到堆的最后。然后从下向上进行堆化(不断的与父节点比较然后交换)。


堆化
public class Heap {
  private int[] a; // 数组,从下标 1 开始存储数据
  private int n;  // 堆可以存储的最大数据个数
  private int count; // 堆中已经存储的数据个数

  public Heap(int capacity) {
    a = new int[capacity + 1];
    n = capacity;
    count = 0;
  }

  public void insert(int data) {
    if (count >= n) return; // 堆满了
    ++count;
    a[count] = data;
    int i = count;
    while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
      swap(a, i, i/2); // swap() 函数作用:交换下标为 i 和 i/2 的两个元素
      i = i/2;
    }
  }
 }

删除堆顶元素:将树的最后一个元素替换掉最大的节点(即根节点),然后从上往下进行堆化(不断的与子节点进行比较然后交换)。


堆化
public void removeMax() {
  if (count == 0) return -1; // 堆中没有数据
  a[1] = a[count];
  --count;
  heapify(a, count, 1);
}

private void heapify(int[] a, int n, int i) { // 自上往下堆化
  while (true) {
    int maxPos = i;
    if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
    if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
    if (maxPos == i) break;
    swap(a, i, maxPos);
    i = maxPos;
  }
}

我们知道树的高度不会超过logn,所以堆化是和树的高度成正比,即插入和删除的时间复杂度都是O(logn)。

上一篇下一篇

猜你喜欢

热点阅读