Java8 ThreadLocal 源码解析
前言
ThreadLocal ,像是一个神秘的黑衣人,令人望而生畏。唯有下定决心,一探究竟,方能解开他神秘的面纱、在Android中,Handler,EventBus,ConnectionPool 等等,都曾出现它的身影
是什么东西?
看到Thread,就想到应该是与线程有关吧,其次,Local是说本地,那组合起来就是线程私有,就是说每个线程都有备份,各备份不是同一个对象
前世今生
是一个泛型类
public class ThreadLocal<T> {}
源码解析
属性
nextHashCode 是获取 hashcode 值,HASH_INCREMENT 初始值为0x61c88647,nextHashCode()函数每次调用增加增量获取下一个值,大家可以好好看看Atomic的实现,以及底层Unsafe的语义
private final int threadLocalHashCode = nextHashCode();
/**
* The next hash code to be given out. Updated atomically. Starts at
* zero.
*/
private static AtomicInteger nextHashCode =
new AtomicInteger();
/**
* The difference between successively generated hash codes - turns
* implicit sequential thread-local IDs into near-optimally spread
* multiplicative hash values for power-of-two-sized tables.
*/
private static final int HASH_INCREMENT = 0x61c88647;
/**
* Returns the next hash code.
*/
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
函数
初始值函数
protected T initialValue() {
return null;
}
set ,将值拷贝到当前线程,使用ThreadLocalMap,这是一个内部类,要了解ThreadLocal,这个类是不得不了解的
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
一探ThreadLocalMap,前方高能,他是一个静态内部类,类似于WeakHashMap,只不过他没有WeakHashMap那么强大,没有Map那么多的接口,不过作为一个内部类,只需要为ThreadLocal服务就可以了,这一条可以在EffectiveJava里找到,废话不多说,看一下他的Entry,继承自WeakReference,关于WeakReference,又可以花大篇幅来介绍了,不过现在暂时不说了,你只要记住当发生GC的时候,WeakReference的对象都会被回收。同样内部也是用Entry数组,默认大小为16,set 函数需要注意的是如何处理哈希碰撞的问题,这里扯一下,处理哈希碰撞的如HashMap使用了拉链法,而这里使用了简单的开发地址法,具体来说就是如果发生了碰撞,就位置就+1,一直到有位置。
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
/**
* The initial capacity -- MUST be a power of two.
*/
private static final int INITIAL_CAPACITY = 16;
/**
* The table, resized as necessary.
* table.length MUST always be a power of two.
*/
private Entry[] table;
/**
* The number of entries in the table.
*/
private int size = 0;
/**
* The next size value at which to resize.
*/
private int threshold; // Default to 0
}
// set 函数,同样也是使用key的hashcode 与 len-1的
// 与值
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
最重要的 get 函数,我们需要记住的是,每个线程有一个ThreadLocalMap,每个Map可以放很多个值,也就是不用的ThreadLocal对象。如果Get 不到数据的话,就会调用InitialValue函数进行赋值,所以有时候我们会重写这个函数,以保证get函数都能获取到正确的值
/**
* Returns the value in the current thread's copy of this
* thread-local variable. If the variable has no value for the
* current thread, it is first initialized to the value returned
* by an invocation of the {@link #initialValue} method.
*
* @return the current thread's value of this thread-local
*/
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
由于使用了WeakReference,可能会存在值丢失,那ThreadLocalMap又是怎么处理这种情况呢?首先自然是处理hash碰撞的问题,通过nextIndex来遍历,其中如果出现某个key获取不到的话,就会执行
expungeStaleEntry(i) 删除旧的entry,具体的做法就是删除这个entry,以及之后出现为空的所有entry
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal<?> k = e.get();
if (k == key)
return e;
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
小结
一个 ThreadLocal 竟包含了如此多的知识,当你熟读各种源码的时候,各种设计模式,各种细节,作者实现的非常有借鉴意义,理解了这样的源码,在今后的项目中使用类似的,便可以知其然知其所以然,做到各种框架的深度定制,甚至实现自己的框架!
欢迎讨论~