Category
2018-07-03 本文已影响14人
紫荆秋雪_文
一、基本使用
- 1、RevanPerson类
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
- (void)test;
@end
#import "RevanPerson.h"
@implementation RevanPerson
- (void)test {
NSLog(@"RevanPerson -test");
}
@end
- 2、RevanPerson+RevanRun
#import "RevanPerson.h"
@interface RevanPerson (RevanRun)
- (void)run;
@end
#import "RevanPerson+RevanRun.h"
@implementation RevanPerson (RevanRun)
- (void)run {
NSLog(@"RevanPerson (RevanRun) -run");
}
@end
- 3、RevanPerson+RevanSleep
#import "RevanPerson.h"
@interface RevanPerson (RevanSleep)
- (void)sleep;
@end
#import "RevanPerson+RevanSleep.h"
@implementation RevanPerson (RevanSleep)
- (void)sleep {
NSLog(@"RevanPerson (RevanSleep) -sleep");
}
@end
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
#import "RevanPerson+RevanRun.h"
#import "RevanPerson+RevanSleep.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
RevanPerson *person = [[RevanPerson alloc] init];
[person test];
[person run];
[person sleep];
}
@end
打印输出:
2018-07-01 22:55:34.571809+0800 01-Category[7688:454393] RevanPerson -test
2018-07-01 22:55:34.572009+0800 01-Category[7688:454393] RevanPerson (RevanRun) -run
2018-07-01 22:55:34.572131+0800 01-Category[7688:454393] RevanPerson (RevanSleep) -sleep
- 常用Category给类添加方法
二、Category的底层结构类型
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc
RevanPerson+RevanRun.m -o RevanPerson+RevanRun.cpp
- Category结构类型,是struct _category_t 结构体类型
struct _category_t {
const char *name;//类名
struct _class_t *cls;//类
const struct _method_list_t *instance_methods;//实例对象方法列表
const struct _method_list_t *class_methods;//实例对象方法列表
const struct _protocol_list_t *protocols;//协议列表
const struct _prop_list_t *properties;//属性列表
};
- 为了看到更加详细的各个参数的情况,给分类再添加一些属性、代理、协议
#import "RevanPerson.h"
#import <UIKit/UIKit.h>
@protocol RevanPerson_RevanRunDelegate
- (void)RevanPerson_RevanRunDelegate_tableData;
- (void)RevanPerson_RevanRunDelegate_tableDelegate;
@end
@interface RevanPerson (RevanRun)<UITableViewDataSource, UITableViewDelegate>
@property (nonatomic, weak) id<RevanPerson_RevanRunDelegate> delegate;
@property (nonatomic, assign) CGFloat speed;
- (void)run;
@end
#import "RevanPerson+RevanRun.h"
@implementation RevanPerson (RevanRun)
- (void)run {
NSLog(@"RevanPerson (RevanRun) -run");
}
@end
- 1、查看RevanPerson+RevanRun源码
_OBJC_$_CATEGORY_RevanPerson_$_RevanRun的赋值情况
static struct _category_t _OBJC_$_CATEGORY_RevanPerson_$_RevanRun __attribute__ ((used, section ("__DATA,__objc_const"))) =
{
"RevanPerson",
0, // &OBJC_CLASS_$_RevanPerson,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_RevanPerson_$_RevanRun,
0,
(const struct _protocol_list_t *)&_OBJC_CATEGORY_PROTOCOLS_$_RevanPerson_$_RevanRun,
(const struct _prop_list_t *)&_OBJC_$_PROP_LIST_RevanPerson_$_RevanRun,
};
- 2、对象方法列表
_OBJC_$_CATEGORY_INSTANCE_METHODS_RevanPerson_$_RevanRun是一个结构体:类型如下
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
}
在对象方法列表(一个数组):发现有run方法
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_INSTANCE_METHODS_RevanPerson_$_RevanRun __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"run", "v16@0:8", (void *)_I_RevanPerson_RevanRun_run}}
};
- 3、协议列表
_OBJC_CATEGORY_PROTOCOLS_$_RevanPerson_$_RevanRun是一个结构体类型,结构如下:
static struct /*_protocol_list_t*/ {
long protocol_count; // Note, this is 32/64 bit
struct _protocol_t *super_protocols[2];
}
在给协议列表_OBJC_CATEGORY_PROTOCOLS_$_RevanPerson_$_RevanRun赋值中可以看到遵守的2个协议
static struct /*_protocol_list_t*/ {
long protocol_count; // Note, this is 32/64 bit
struct _protocol_t *super_protocols[2];
} _OBJC_CATEGORY_PROTOCOLS_$_RevanPerson_$_RevanRun __attribute__ ((used, section ("__DATA,__objc_const"))) = {
2,
&_OBJC_PROTOCOL_UITableViewDataSource,
&_OBJC_PROTOCOL_UITableViewDelegate
};
- 4、属性列表
_OBJC_$_PROP_LIST_RevanPerson_$_RevanRun是一个结构体类型,结构体如下:
static struct /*_prop_list_t*/ {
unsigned int entsize; // sizeof(struct _prop_t)
unsigned int count_of_properties;
struct _prop_t prop_list[2];
}
当前Category有的属性
static struct /*_prop_list_t*/ {
unsigned int entsize; // sizeof(struct _prop_t)
unsigned int count_of_properties;
struct _prop_t prop_list[2];
} _OBJC_$_PROP_LIST_RevanPerson_$_RevanRun __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_prop_t),
2,
{{"delegate","T@\"<RevanPerson_RevanRunDelegate>\",W,N"},
{"speed","Td,N"}}
};
三、Category底层实现原理
- 场景:
- RevanPerson
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
- (void)test;
@end
#import "RevanPerson.h"
@implementation RevanPerson
- (void)test {
NSLog(@"RevanPerson -test");
}
@end
- RevanPerson+RevanSleep
#import "RevanPerson.h"
@interface RevanPerson (RevanSleep)
- (void)sleep;
- (void)test;
@end
@implementation RevanPerson (RevanSleep)
- (void)sleep {
NSLog(@"RevanPerson (RevanSleep) -sleep");
}
- (void)test {
NSLog(@"RevanPerson (RevanSleep) -test");
}
@end
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
#import "RevanPerson+RevanRun.h"
#import "RevanPerson+RevanSleep.h"
#import <objc/runtime.h>
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
RevanPerson *person = [[RevanPerson alloc] init];
[person test];
[person sleep];
}
@end
打印输出:
2018-07-01 23:51:17.378727+0800 01-Category[8248:492929] RevanPerson (RevanSleep) -test
2018-07-01 23:51:17.378926+0800 01-Category[8248:492929] RevanPerson (RevanSleep) -sleep
- person对象为什么可以调用Category中的sleep方法?
- 当Category中有test对象方法和RevanPerson.h文件中申明的test对象方法一样的时候,问什么会调用Category中的test?
- runtime源码
- 分析源码
1、找到_objc_init
2、找到map_images
3、找到map_images_nolock
4、找到_read_images
5、找到remethodizeClass
6、找到attachCategories
7、找到attachCategories
8、找到attachLists
- 分析attachCategories函数
/**
@param cls 传入的类
@param cats Category方法列表
*/
static void
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
if (!cats) return;
if (PrintReplacedMethods) printReplacements(cls, cats);
//判断传入的cls是否是meta-class对象
bool isMeta = cls->isMetaClass();
// fixme rearrange to remove these intermediate allocations
// method_list_t存储方法列表
method_list_t **mlists = (method_list_t **)
malloc(cats->count * sizeof(*mlists));
// property_list_t存储属性列表
property_list_t **proplists = (property_list_t **)
malloc(cats->count * sizeof(*proplists));
// protocol_list_t存储协议列表
protocol_list_t **protolists = (protocol_list_t **)
malloc(cats->count * sizeof(*protolists));
// Count backwards through cats to get newest categories first
int mcount = 0;
int propcount = 0;
int protocount = 0;
//Category方法的个数
int i = cats->count;
bool fromBundle = NO;
while (i--) {
//倒序取出Category列表中的方法
auto& entry = cats->list[i];
//通过isMeta来判断是去对象方法,还是类方法
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
//把Category方法倒序的添加mlists数组中
if (mlist) {
mlists[mcount++] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
//把Category属性倒序的添加proplists数组中
if (proplist) {
proplists[propcount++] = proplist;
}
protocol_list_t *protolist = entry.cat->protocols;
//把Category协议倒序的添加protolists数组中
if (protolist) {
protolists[protocount++] = protolist;
}
}
auto rw = cls->data();
prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
rw->methods.attachLists(mlists, mcount);
free(mlists);
if (flush_caches && mcount > 0) flushCaches(cls);
rw->properties.attachLists(proplists, propcount);
free(proplists);
rw->protocols.attachLists(protolists, protocount);
free(protolists);
}
- 当在没有运行代码时 Category原理一.png
- 当运行代码时 RevanPerson原理二.png
- 最后方法列表 RevanPerson原理三.png
- 小结:
- 在分类和类中有相同的对象方法时,因为在class对象的对象方法列表中Category中的方法排在前面
- 当有多个Category时并且有相同方法,具体调用哪一个Category中的方法,遵守先被编译的Category方法排在方法列表中的后面,但是一定在class对象中相同方法的前面
四、+load方法
+load方法会在runtime加载类、分类时调用,并且每个类、分类的+load在程序运行过程中只调用一次
1、一个类的+load方法和分类的+load方法调用的先后顺序
- RevanPerson
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
@end
#import "RevanPerson.h"
@implementation RevanPerson
+ (void)load {
NSLog(@"RevanPerson");
}
@end
- RevanPerson+RevanRun
#import "RevanPerson.h"
@interface RevanPerson (RevanRun)
@end
#import "RevanPerson+RevanRun.h"
@implementation RevanPerson (RevanRun)
+ (void)load {
NSLog(@"RevanPerson (RevanRun) +load");
}
@end
- RevanPerson+RevanSleep
#import "RevanPerson.h"
@interface RevanPerson (RevanSleep)
@end
#import "RevanPerson+RevanSleep.h"
@implementation RevanPerson (RevanSleep)
+(void)load {
NSLog(@"RevanPerson (RevanSleep) +load");
}
@end
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
#import "RevanPerson+RevanRun.h"
#import "RevanPerson+RevanSleep.h"
#import <objc/runtime.h>
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
}
@end
打印输出:
2018-07-02 02:04:49.021850+0800 01-Category[10118:587209] RevanPerson
2018-07-02 02:04:49.052238+0800 01-Category[10118:587209] RevanPerson (RevanSleep) +load
2018-07-02 02:04:49.052451+0800 01-Category[10118:587209] RevanPerson (RevanRun) +load
- 源码分析
类和分类的+load方法是程序运行的时候就会加载,所以可以查看runtime的源码
- 1、runtime的入口void _objc_init(void)
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
//注册加载入口
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
- 2、加载load镜像load_images
void
load_images(const char *path __unused, const struct mach_header *mh)
{
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
rwlock_writer_t lock2(runtimeLock);
prepare_load_methods((const headerType *)mh);
}
//Revan:调用 +load方法
// Call +load methods (without runtimeLock - re-entrant)
call_load_methods();
}
- 3、call_load_methods()加载+load方法
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
//Revan:加载class的 +load方法
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
//Revan:加载Category中的 +load方法
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
- 调用类的+load方法call_class_loads,直接获得程序中的所有类,并且直接执行+load方法
static void call_class_loads(void)
{
int i;
/*
struct loadable_class {
Class cls; // may be nil
IMP method;
};
这个结构体中的 method是load方法
*/
// Detach current loadable list.
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
/*
loadable_classes_used是在准备加载类的时候,计算出类的个数,后面具体分析
通过for循环来调用所有类的+load方法
*/
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
//获取类
Class cls = classes[i].cls;
// typedef void(*load_method_t)(id, SEL);
//获取方法(+load方法)
//load_method函数指针
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
if (PrintLoading) {
_objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
}
//直接执行cls类的load方法
(*load_method)(cls, SEL_load);
}
// Destroy the detached list.
if (classes) free(classes);
}
- 4、加载分类的+load方法call_category_loads
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
//Revan:加载class的 +load方法
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
/********** 加载类的+load方法都完成后接下来才加载分类的+load方法 ***********/
//Revan:加载Category中的 +load方法
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
- 调用分类的+load方法(call_category_loads)
static bool call_category_loads(void)
{
int i, shift;
bool new_categories_added = NO;
/**
struct loadable_category {
Category cat; // may be nil
IMP method;
};
*/
// Detach current loadable list.
struct loadable_category *cats = loadable_categories;
int used = loadable_categories_used;
int allocated = loadable_categories_allocated;
loadable_categories = nil;
loadable_categories_allocated = 0;
loadable_categories_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
//typedef struct category_t *Category;
//获取分类
Category cat = cats[i].cat;
//获取分类中的+load方法
load_method_t load_method = (load_method_t)cats[i].method;
Class cls;
if (!cat) continue;
cls = _category_getClass(cat);
if (cls && cls->isLoadable()) {
if (PrintLoading) {
_objc_inform("LOAD: +[%s(%s) load]\n",
cls->nameForLogging(),
_category_getName(cat));
}
//执行类的+load方法
(*load_method)(cls, SEL_load);
cats[i].cat = nil;
}
}
// Compact detached list (order-preserving)
shift = 0;
for (i = 0; i < used; i++) {
if (cats[i].cat) {
cats[i-shift] = cats[i];
} else {
shift++;
}
}
used -= shift;
// Copy any new +load candidates from the new list to the detached list.
new_categories_added = (loadable_categories_used > 0);
for (i = 0; i < loadable_categories_used; i++) {
if (used == allocated) {
allocated = allocated*2 + 16;
cats = (struct loadable_category *)
realloc(cats, allocated *
sizeof(struct loadable_category));
}
cats[used++] = loadable_categories[i];
}
// Destroy the new list.
if (loadable_categories) free(loadable_categories);
// Reattach the (now augmented) detached list.
// But if there's nothing left to load, destroy the list.
if (used) {
loadable_categories = cats;
loadable_categories_used = used;
loadable_categories_allocated = allocated;
} else {
if (cats) free(cats);
loadable_categories = nil;
loadable_categories_used = 0;
loadable_categories_allocated = 0;
}
if (PrintLoading) {
if (loadable_categories_used != 0) {
_objc_inform("LOAD: %d categories still waiting for +load\n",
loadable_categories_used);
}
}
return new_categories_added;
}
- 小结:
- 从上面的分析可以很肯定的一点是,在类和分类同时存在的情况下,肯定是先执行类的+load方法之后才执行分类的+load方法
2、多个类的+load方法调用顺序
- RevanPerson类
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
@end
#import "RevanPerson.h"
@implementation RevanPerson
+ (void)load {
NSLog(@"RevanPerson +load");
}
@end
- RevanCat类
#import <Foundation/Foundation.h>
@interface RevanCat : NSObject
@end
#import "RevanCat.h"
@implementation RevanCat
+ (void)load {
NSLog(@"RevanCat +load");
}
@end
- RevanCar类
#import <Foundation/Foundation.h>
@interface RevanCar : NSObject
@end
#import "RevanCar.h"
@implementation RevanCar
+ (void)load {
NSLog(@"RevanCar +load");
}
@end
- 编译顺序 加载类的+load的编译顺序.png
-
输出打印
2018-07-02 21:43:02.233461+0800 03-moreClassload[11450:679953] RevanCat +load
2018-07-02 21:43:02.234868+0800 03-moreClassload[11450:679953] RevanPerson +load
2018-07-02 21:43:02.235437+0800 03-moreClassload[11450:679953] RevanCar +load
- 调整编译顺序 -
- 输出打印:
2018-07-02 21:47:21.731838+0800 03-moreClassload[11502:683412] RevanCar +load
2018-07-02 21:47:21.743166+0800 03-moreClassload[11502:683412] RevanCat +load
2018-07-02 21:47:21.744275+0800 03-moreClassload[11502:683412] RevanPerson +load
- 源码分析
- 1、runtime初始化的方法
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
//注册加载入口
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
- 2、加载load的镜像方法
void
load_images(const char *path __unused, const struct mach_header *mh)
{
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
rwlock_writer_t lock2(runtimeLock);
//准备加载load方法
prepare_load_methods((const headerType *)mh);
}
//Revan:调用 +load方法
// Call +load methods (without runtimeLock - re-entrant)
call_load_methods();
}
- 3、刚才分析加载load方法(call_load_methods),在里面我们看到了存储类和分类的数组,那么这个数组中的值是什么时候加载的呢?从上面的源码可以发现在加载call_load_methods函数的前面有一个准备加载load方法的函数prepare_load_methods函数
void prepare_load_methods(const headerType *mhdr)
{
size_t count, i;
runtimeLock.assertWriting();
//_getObjc2NonlazyClassList:获取objc不是懒加载类的列表
//这个方法应该是获得程序中所有的类
//typedef struct classref * classref_t;
classref_t *classlist =
_getObjc2NonlazyClassList(mhdr, &count);
//通过遍历存储类的数组,
for (i = 0; i < count; i++) {
/*
把类传入到定制加载类的load函数中(schedule_class_load)
如果传入的是一个子类,那么他会一层一层取到cls的父类
然后在一个一个的把类添加到一个数组中(add_class_to_loadable_list函数实现)
*/
schedule_class_load(remapClass(classlist[i]));
}
//_getObjc2NonlazyCategoryList:获取objc不是懒加载分类的列表
category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
for (i = 0; i < count; i++) {
//获取分类category_t
category_t *cat = categorylist[i];
//把category_t转化成类
Class cls = remapClass(cat->cls);
if (!cls) continue; // category for ignored weak-linked class
realizeClass(cls);
assert(cls->ISA()->isRealized());
//获取分类数组
add_category_to_loadable_list(cat);
}
}
- 4、加载类的load方法做一些schedule事情(schedule_class_load):比如查找类的父类
static void schedule_class_load(Class cls)
{
if (!cls) return;
assert(cls->isRealized()); // _read_images should realize
if (cls->data()->flags & RW_LOADED) return;
// Ensure superclass-first ordering
/*
这是一个递归,
先获得传入的类的父类
之后在传入定制加载类的+load方法
*/
schedule_class_load(cls->superclass);
//把类一个一个的添加到数组中
add_class_to_loadable_list(cls);
cls->setInfo(RW_LOADED);
}
- 5、使用add_class_to_loadable_list函数把类加载到一个数组loadable_classes中
void add_class_to_loadable_list(Class cls)
{
IMP method;
loadMethodLock.assertLocked();
//获取类的load方法
method = cls->getLoadMethod();
if (!method) return; // Don't bother if cls has no +load method
if (PrintLoading) {
_objc_inform("LOAD: class '%s' scheduled for +load",
cls->nameForLogging());
}
/**
最开始
static int loadable_classes_used = 0;
static int loadable_classes_allocated = 0;
所以第一次会进入if判断中
loadable_classes_allocated = 16
在执行了call_class_loads函数后:
loadable_classes_allocated = 0;
loadable_classes_used = 0;
*/
if (loadable_classes_used == loadable_classes_allocated) {
loadable_classes_allocated = loadable_classes_allocated*2 + 16;
//给loadable_classes数组分配空间
loadable_classes = (struct loadable_class *)
realloc(loadable_classes,
loadable_classes_allocated *
sizeof(struct loadable_class));
}
//获取loadable_classes_used元素并且给属性赋值(cls、method)
loadable_classes[loadable_classes_used].cls = cls;
loadable_classes[loadable_classes_used].method = method;
//下标++
loadable_classes_used++;
}
- 小结:
- 可以肯定的是在有多个类的时候,加载类的+load方法的先后顺序是要看这些类的编译顺的,先编译先调用类的load方法
4、一个类和子类的+load方法调用顺序
- RevanPerson
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
@end
#import "RevanPerson.h"
@implementation RevanPerson
+ (void)load {
NSLog(@"RevanPerson");
}
@end
- RevanStudent
#import "RevanPerson.h"
@interface RevanStudent : RevanPerson
@end
#import "RevanStudent.h"
@implementation RevanStudent
+ (void)load {
NSLog(@"RevanStudent");
}
@end
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
#import "RevanPerson+RevanRun.h"
#import "RevanPerson+RevanSleep.h"
#import <objc/runtime.h>
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
}
@end
打印输出:
2018-07-02 02:07:36.637509+0800 01-Category[10168:589605] RevanPerson
2018-07-02 02:07:36.639657+0800 01-Category[10168:589605] RevanStudent
- 小结:
- 通过上面的源码分析,我们可以知道,在准备加载类的load方法中有一个schedule_class_load函数,在这个函数中会递归调用schedule_class_load函数传入父类,然后再调用add_class_to_loadable_list函数把类一个一个追加到数组loadable_classes中,由于在使用数组loadable_classes的时候是用的for循环,从前往后一个一个取值,所以会先调用父类的load方法再调用子类的load方法。
- 源码辅助理解
//定制化class的load函数
static void schedule_class_load(Class cls)
{
if (!cls) return;
assert(cls->isRealized()); // _read_images should realize
if (cls->data()->flags & RW_LOADED) return;
// Ensure superclass-first ordering
/*
这是一个递归,
先获得传入的类的父类
之后在传入定制加载类的+load方法
*/
schedule_class_load(cls->superclass);
//把类一个一个的添加到数组中
add_class_to_loadable_list(cls);
cls->setInfo(RW_LOADED);
}
//把类加入到loadable_classes数组中
void add_class_to_loadable_list(Class cls)
{
IMP method;
loadMethodLock.assertLocked();
//获取类的load方法
method = cls->getLoadMethod();
if (!method) return; // Don't bother if cls has no +load method
if (PrintLoading) {
_objc_inform("LOAD: class '%s' scheduled for +load",
cls->nameForLogging());
}
/**
最开始
static int loadable_classes_used = 0;
static int loadable_classes_allocated = 0;
所以第一次会进入if判断中
loadable_classes_allocated = 16
在执行了call_class_loads函数后:
loadable_classes_allocated = 0;
loadable_classes_used = 0;
*/
if (loadable_classes_used == loadable_classes_allocated) {
loadable_classes_allocated = loadable_classes_allocated*2 + 16;
//给loadable_classes数组分配空间
loadable_classes = (struct loadable_class *)
realloc(loadable_classes,
loadable_classes_allocated *
sizeof(struct loadable_class));
}
//获取loadable_classes_used元素并且给属性赋值(cls、method)
loadable_classes[loadable_classes_used].cls = cls;
loadable_classes[loadable_classes_used].method = method;
//下标++
loadable_classes_used++;
}
5、当类有Category并且子类也有Category的时候+load调用顺序
- RevanPerson
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
@end
#import "RevanPerson.h"
@implementation RevanPerson
+ (void)load {
NSLog(@"RevanPerson");
}
@end
- RevanPerson+RevanRun
#import "RevanPerson.h"
@interface RevanPerson (RevanRun)
@end
#import "RevanPerson+RevanRun.h"
@implementation RevanPerson (RevanRun)
+ (void)load {
NSLog(@"RevanPerson (RevanRun) +load");
}
@end
- RevanPerson+RevanSleep
#import "RevanPerson.h"
@interface RevanPerson (RevanSleep)
@end
#import "RevanPerson+RevanSleep.h"
@implementation RevanPerson (RevanSleep)
+(void)load {
NSLog(@"RevanPerson (RevanSleep) +load");
}
@end
- RevanStudent
#import "RevanPerson.h"
@interface RevanStudent : RevanPerson
@end
#import "RevanStudent.h"
@implementation RevanStudent
+ (void)load {
NSLog(@"RevanStudent");
}
@end
- RevanStudent+RevanRun
#import "RevanStudent.h"
@interface RevanStudent (RevanRun)
@end
#import "RevanStudent+RevanRun.h"
@implementation RevanStudent (RevanRun)
+ (void)load {
NSLog(@"RevanStudent (RevanRun) +load");
}
@end
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
#import "RevanPerson+RevanRun.h"
#import "RevanPerson+RevanSleep.h"
#import <objc/runtime.h>
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
}
@end
打印输出:
2018-07-02 02:12:04.902102+0800 01-Category[10233:593298] RevanPerson
2018-07-02 02:12:04.905031+0800 01-Category[10233:593298] RevanStudent
2018-07-02 02:12:04.906406+0800 01-Category[10233:593298] RevanStudent (RevanRun) +load
2018-07-02 02:12:04.907060+0800 01-Category[10233:593298] RevanPerson (RevanSleep) +load
2018-07-02 02:12:04.908733+0800 01-Category[10233:593298] RevanPerson (RevanRun) +load
5、加载+load方法的源码分析
- runtime入口
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
//注册加载入口
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
- 加载load镜像
load_images(const char *path __unused, const struct mach_header *mh)
{
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
rwlock_writer_t lock2(runtimeLock);
//准备加载load方法
prepare_load_methods((const headerType *)mh);
}
//Revan:调用 +load方法
// Call +load methods (without runtimeLock - re-entrant)
call_load_methods();
}
- 5.1、runtime加载代码中有多少个类的
- 5.1.1、准备加载load方法(prepare_load_methods),在里面有些注释。在获取类的load方法和获取分类的load方法大致是一样的,唯一不一样的地方是在遍历获取类的load中是调用了一个加载类的load方法的定制函数(schedule_class_load函数),这个函数中自己调用自己,传入的参数是父类,通过递归来获得父类,最后在执行add_class_to_loadable_list来把类的load方法都添加到loadable_classes数组中;添加分类的load方法是没有递归父类的load方法这一步,直接使用add_category_to_loadable_list函数添加分类的load方法到loadable_categories数组中
void prepare_load_methods(const headerType *mhdr)
{
size_t count, i;
runtimeLock.assertWriting();
//_getObjc2NonlazyClassList:获取objc不是懒加载类的列表
//这个方法应该是获得程序中所有的类
//typedef struct classref * classref_t;
classref_t *classlist =
_getObjc2NonlazyClassList(mhdr, &count);
//通过遍历存储类的数组,
for (i = 0; i < count; i++) {
/*
把类传入到定制加载类的load函数中(schedule_class_load)
如果传入的是一个子类,那么他会一层一层取到cls的父类
然后在一个一个的把类添加到一个数组中(add_class_to_loadable_list函数实现)
*/
schedule_class_load(remapClass(classlist[i]));
}
//_getObjc2NonlazyCategoryList:获取objc不是懒加载分类的列表
category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
for (i = 0; i < count; i++) {
//获取分类category_t
category_t *cat = categorylist[i];
//把category_t转化成类
Class cls = remapClass(cat->cls);
if (!cls) continue; // category for ignored weak-linked class
realizeClass(cls);
assert(cls->ISA()->isRealized());
//获取分类数组
add_category_to_loadable_list(cat);
}
}
- 类的load方法schedule函数schedule_class_load
static void schedule_class_load(Class cls)
{
if (!cls) return;
assert(cls->isRealized()); // _read_images should realize
if (cls->data()->flags & RW_LOADED) return;
// Ensure superclass-first ordering
/*
这是一个递归,
先获得传入的类的父类
之后在传入定制加载类的+load方法
*/
schedule_class_load(cls->superclass);
//把类一个一个的添加到数组中
add_class_to_loadable_list(cls);
cls->setInfo(RW_LOADED);
}
- 把类的load方法添加到loadable_classes数组中
void add_class_to_loadable_list(Class cls)
{
IMP method;
loadMethodLock.assertLocked();
//获取类的load方法
method = cls->getLoadMethod();
if (!method) return; // Don't bother if cls has no +load method
if (PrintLoading) {
_objc_inform("LOAD: class '%s' scheduled for +load",
cls->nameForLogging());
}
/**
最开始
static int loadable_classes_used = 0;
static int loadable_classes_allocated = 0;
所以第一次会进入if判断中
loadable_classes_allocated = 16
在执行了call_class_loads函数后:
loadable_classes_allocated = 0;
loadable_classes_used = 0;
*/
if (loadable_classes_used == loadable_classes_allocated) {
loadable_classes_allocated = loadable_classes_allocated*2 + 16;
//给loadable_classes数组分配空间
loadable_classes = (struct loadable_class *)
realloc(loadable_classes,
loadable_classes_allocated *
sizeof(struct loadable_class));
}
//获取loadable_classes_used元素并且给属性赋值(cls、method)
loadable_classes[loadable_classes_used].cls = cls;
loadable_classes[loadable_classes_used].method = method;
//下标++
loadable_classes_used++;
}
- 添加分类的load方法到loadable_categories数组中
void add_category_to_loadable_list(Category cat)
{
IMP method;
loadMethodLock.assertLocked();
method = _category_getLoadMethod(cat);
// Don't bother if cat has no +load method
if (!method) return;
if (PrintLoading) {
_objc_inform("LOAD: category '%s(%s)' scheduled for +load",
_category_getClassName(cat), _category_getName(cat));
}
if (loadable_categories_used == loadable_categories_allocated) {
loadable_categories_allocated = loadable_categories_allocated*2 + 16;
loadable_categories = (struct loadable_category *)
realloc(loadable_categories,
loadable_categories_allocated *
sizeof(struct loadable_category));
}
loadable_categories[loadable_categories_used].cat = cat;
loadable_categories[loadable_categories_used].method = method;
loadable_categories_used++;
}
- 5.2、runtime调用类或者分类的load方法
- 5.2.1、call_load_methods函数,通过loadable_classes_used来判断是否有类,如何有就调用类的call_class_loads函数
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
//Revan:加载class的 +load方法
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
/********** 加载类的+load方法都完成后接下来才加载分类的+load方法 ***********/
//Revan:加载Category中的 +load方法
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
- 5.2.2、调用触发(类调用load方法的函数(call_class_loads))在这里存储类的数组classes,遍历数组classes,直接拿到method中的load方法直接执行。所以call_class_loads函数调用过后类的load方法都已经调用完成
static void call_class_loads(void)
{
int i;
/*
struct loadable_class {
Class cls; // may be nil
IMP method;
};
这个结构体中的 method是load方法
*/
// Detach current loadable list.
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
/*
loadable_classes_used是在准备加载类的时候,计算出类的个数,后面具体分析
通过for循环来调用所有类的+load方法
*/
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
//获取类
Class cls = classes[i].cls;
// typedef void(*load_method_t)(id, SEL);
//获取方法(+load方法)
//load_method函数指针
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
if (PrintLoading) {
_objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
}
//直接执行cls类的load方法
(*load_method)(cls, SEL_load);
}
// Destroy the detached list.
if (classes) free(classes);
}
- 5.2.3、触发(分类调用load函数(call_category_loads))拿到存储分类的loadable_categories数组,通过遍历数组loadable_categories,来获得method和转换的cls,之后直接调用
static bool call_category_loads(void)
{
int i, shift;
bool new_categories_added = NO;
/**
struct loadable_category {
Category cat; // may be nil
IMP method;
};
*/
// Detach current loadable list.
struct loadable_category *cats = loadable_categories;
int used = loadable_categories_used;
int allocated = loadable_categories_allocated;
loadable_categories = nil;
loadable_categories_allocated = 0;
loadable_categories_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
//typedef struct category_t *Category;
//获取分类
Category cat = cats[i].cat;
//获取分类中的+load方法
load_method_t load_method = (load_method_t)cats[i].method;
Class cls;
if (!cat) continue;
cls = _category_getClass(cat);
if (cls && cls->isLoadable()) {
if (PrintLoading) {
_objc_inform("LOAD: +[%s(%s) load]\n",
cls->nameForLogging(),
_category_getName(cat));
}
//执行类的+load方法
(*load_method)(cls, SEL_load);
cats[i].cat = nil;
}
}
// Compact detached list (order-preserving)
shift = 0;
for (i = 0; i < used; i++) {
if (cats[i].cat) {
cats[i-shift] = cats[i];
} else {
shift++;
}
}
used -= shift;
// Copy any new +load candidates from the new list to the detached list.
new_categories_added = (loadable_categories_used > 0);
for (i = 0; i < loadable_categories_used; i++) {
if (used == allocated) {
allocated = allocated*2 + 16;
cats = (struct loadable_category *)
realloc(cats, allocated *
sizeof(struct loadable_category));
}
cats[used++] = loadable_categories[i];
}
// Destroy the new list.
if (loadable_categories) free(loadable_categories);
// Reattach the (now augmented) detached list.
// But if there's nothing left to load, destroy the list.
if (used) {
loadable_categories = cats;
loadable_categories_used = used;
loadable_categories_allocated = allocated;
} else {
if (cats) free(cats);
loadable_categories = nil;
loadable_categories_used = 0;
loadable_categories_allocated = 0;
}
if (PrintLoading) {
if (loadable_categories_used != 0) {
_objc_inform("LOAD: %d categories still waiting for +load\n",
loadable_categories_used);
}
}
return new_categories_added;
}
- 小结
- a)调用类的+load方法
- 先调用类的+load方法,按照编译先后顺序调用(先编译,先调用)
- 调用子类的+load之前会先调用父类的+load方法
- b)调用分类的+load方法
- 按照编译先后顺序调用(先编译,先调用)
- a)调用类的+load方法
五、+initialize方法
+initialize方法会在类第一次接收到消息时调用
- RevanPerson
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
@end
#import "RevanPerson.h"
@implementation RevanPerson
+ (void)initialize {
NSLog(@"RevanPerson + initialize");
}
@end
- 测试代码
#import "ViewController.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
}
@end
- 没有输出,RevanPerson中的initialize方法没有调用,所以当代码中不使用RevanPerson这个类的时候,是不会触发initialize方法
- 测试代码(使用RevanPerson)
#import "ViewController.h"
#import "RevanPerson.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
[RevanPerson alloc];
}
@end
- 打印输出:2018-07-03 01:47:32.869743+0800 04-initialize[13794:849444] RevanPerson + initialize
1、但类和分类中都有+ initialize方法时,initialize如何调用
- 1、RevanPerson
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
@end
#import "RevanPerson.h"
@implementation RevanPerson
+ (void)initialize {
NSLog(@"RevanPerson + initialize");
}
@end
- 2、RevanPerson+RevanRun
#import "RevanPerson.h"
@interface RevanPerson (RevanRun)
@end
#import "RevanPerson+RevanRun.h"
@implementation RevanPerson (RevanRun)
+ (void)initialize {
NSLog(@"RevanPerson (RevanRun) + initialize");
}
@end
- 3、RevanPerson+RevanEat
#import "RevanPerson.h"
@interface RevanPerson (RevanEat)
@end
#import "RevanPerson+RevanEat.h"
@implementation RevanPerson (RevanEat)
+ (void)initialize {
NSLog(@"RevanPerson (RevanEat) + initialize");
}
@end
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
[RevanPerson alloc];
}
@end
打印输出:
2018-07-03 01:54:59.108693+0800 04-initialize[13882:854989] RevanPerson (RevanEat) + initialize
- 发现是使用的分类中的+initialize方法。调整2个分类的编译顺序后,发现打印结果发生改变
2018-07-03 01:56:12.115167+0800 04-initialize[13899:856044] RevanPerson (RevanRun) + initialize
- 4、源码分析
- 4.1、找到objc-runtime-new.mm文件中的class_getInstanceMethod
Method class_getInstanceMethod(Class cls, SEL sel)
{
if (!cls || !sel) return nil;
// This deliberately avoids +initialize because it historically did so.
// This implementation is a bit weird because it's the only place that
// wants a Method instead of an IMP.
#warning fixme build and search caches
// Search method lists, try method resolver, etc.
lookUpImpOrNil(cls, sel, nil,
NO/*initialize*/, NO/*cache*/, YES/*resolver*/);
#warning fixme build and search caches
return _class_getMethod(cls, sel);
}
- 4.2、查看lookUpImpOrNil方法
IMP lookUpImpOrNil(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = lookUpImpOrForward(cls, sel, inst, initialize, cache, resolver);
if (imp == _objc_msgForward_impcache) return nil;
else return imp;
}
- 4.3、查看lookUpImpOrForward函数
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO;
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (cache) {
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.read();
if (!cls->isRealized()) {
// Drop the read-lock and acquire the write-lock.
// realizeClass() checks isRealized() again to prevent
// a race while the lock is down.
runtimeLock.unlockRead();
runtimeLock.write();
realizeClass(cls);
runtimeLock.unlockWrite();
runtimeLock.read();
}
/*
initialize:是否需要初始化
isInitialized函数判断cls类是否已经初始化
当initialize = YES
isInitialized返回为NO
*/
if (initialize && !cls->isInitialized()) {
runtimeLock.unlockRead();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.read();
// If sel == initialize, _class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
retry:
runtimeLock.assertReading();
// Try this class's cache.
imp = cache_getImp(cls, sel);
if (imp) goto done;
// Try this class's method lists.
{
Method meth = getMethodNoSuper_nolock(cls, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, cls);
imp = meth->imp;
goto done;
}
}
// Try superclass caches and method lists.
{
unsigned attempts = unreasonableClassCount();
for (Class curClass = cls->superclass;
curClass != nil;
curClass = curClass->superclass)
{
// Halt if there is a cycle in the superclass chain.
if (--attempts == 0) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
}
// Superclass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
goto done;
}
}
}
// No implementation found. Try method resolver once.
if (resolver && !triedResolver) {
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst);
runtimeLock.read();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES;
goto retry;
}
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
done:
runtimeLock.unlockRead();
return imp;
}
- 4.4、通过传入的参数initialize和调用类的isInitialized函数的返回结果一起来判断是否调用_class_initialize函数,是否要初始化类;当这个类需要初始化(initialize=YES)并且还没有初始化(isInitialized函数返回值为NO时)会调用_class_initialize函数进行初始化。
- 4.4.1、首先会找到cls的父类,查看父类是否存在,父类是否已经初始化,当父类也需要初始化的时候会递归调用_class_initialize函数
- 4.4.2、在父类初始化完成以后,如果当前类没有初始化,那么进行当前类的初始化并且把reallyInitialize=YES
- 4.4.3、当前类已经初始化完成后调用callInitialize函数
void _class_initialize(Class cls)
{
assert(!cls->isMetaClass());
Class supercls;
bool reallyInitialize = NO;
// Make sure super is done initializing BEFORE beginning to initialize cls.
// See note about deadlock above.
//获得父类
supercls = cls->superclass;
//存在父类对象并且父类没有初始化,执行递归初始化方法,给父类初始化
if (supercls && !supercls->isInitialized()) {
_class_initialize(supercls);
}
// Try to atomically set CLS_INITIALIZING.
{
monitor_locker_t lock(classInitLock);
//如果传进来的类没有初始化,就给类初始化并且reallyInitialize设置为YES
if (!cls->isInitialized() && !cls->isInitializing()) {
cls->setInitializing();
reallyInitialize = YES;
}
}
///已经初始化了
if (reallyInitialize) {
// We successfully set the CLS_INITIALIZING bit. Initialize the class.
// Record that we're initializing this class so we can message it.
_setThisThreadIsInitializingClass(cls);
if (MultithreadedForkChild) {
// LOL JK we don't really call +initialize methods after fork().
performForkChildInitialize(cls, supercls);
return;
}
// Send the +initialize message.
// Note that +initialize is sent to the superclass (again) if
// this class doesn't implement +initialize. 2157218
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: calling +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
// Exceptions: A +initialize call that throws an exception
// is deemed to be a complete and successful +initialize.
//
// Only __OBJC2__ adds these handlers. !__OBJC2__ has a
// bootstrapping problem of this versus CF's call to
// objc_exception_set_functions().
#if __OBJC2__
@try
#endif
{
//调用类的初始化方法,是在给类cls发送一个SEL_initialize消息
callInitialize(cls);
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
}
#if __OBJC2__
@catch (...) {
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: +[%s initialize] "
"threw an exception",
pthread_self(), cls->nameForLogging());
}
@throw;
}
@finally
#endif
{
// Done initializing.
lockAndFinishInitializing(cls, supercls);
}
return;
}
else if (cls->isInitializing()) {
// We couldn't set INITIALIZING because INITIALIZING was already set.
// If this thread set it earlier, continue normally.
// If some other thread set it, block until initialize is done.
// It's ok if INITIALIZING changes to INITIALIZED while we're here,
// because we safely check for INITIALIZED inside the lock
// before blocking.
if (_thisThreadIsInitializingClass(cls)) {
return;
} else if (!MultithreadedForkChild) {
waitForInitializeToComplete(cls);
return;
} else {
// We're on the child side of fork(), facing a class that
// was initializing by some other thread when fork() was called.
_setThisThreadIsInitializingClass(cls);
performForkChildInitialize(cls, supercls);
}
}
else if (cls->isInitialized()) {
// Set CLS_INITIALIZING failed because someone else already
// initialized the class. Continue normally.
// NOTE this check must come AFTER the ISINITIALIZING case.
// Otherwise: Another thread is initializing this class. ISINITIALIZED
// is false. Skip this clause. Then the other thread finishes
// initialization and sets INITIALIZING=no and INITIALIZED=yes.
// Skip the ISINITIALIZING clause. Die horribly.
return;
}
else {
// We shouldn't be here.
_objc_fatal("thread-safe class init in objc runtime is buggy!");
}
}
- 4.5、调用初始化callInitialize,实质是给当前类发送一个SEL_initialize消息
/**
调用初始化方法(给类发送SEL_initialize初始化消息)
@param cls 类
*/
void callInitialize(Class cls)
{
((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
asm("");
}
- 小结
- 调用+initialize本质是给一个类发送一个initialize消息,由于消息机制的本质(isa指针、supercla指针),所以会优先调用分类的方法
2、类和子类都有+initialize
- 父类RevanPerson
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
@end
#import "RevanPerson.h"
@implementation RevanPerson
+ (void)initialize {
NSLog(@"RevanPerson + initialize");
}
@end
- 子类RevanStudent
#import "RevanPerson.h"
@interface RevanStudent : RevanPerson
@end
#import "RevanStudent.h"
@implementation RevanStudent
+ (void)initialize {
NSLog(@"RevanStudent + initialize");
}
@end
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
#import "RevanStudent.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
[RevanStudent alloc];
[RevanPerson alloc];
}
@end
打印输出:
2018-07-03 02:31:31.316817+0800 04-initialize[14221:880196] RevanPerson + initialize
2018-07-03 02:31:31.316995+0800 04-initialize[14221:880196] RevanStudent + initialize
- 源码分析
- a)当当前类需要初始化的时候调用_class_initialize函数来初始化
- b)判断当前类是否有父类,父类是否需要初始化化,如果父类存在并且需要初始化时,又会调用_class_initialize函数来初始化。所以会先调用父类的 + initialize方法,再调用子类的 + initialize方法
void _class_initialize(Class cls)
{
assert(!cls->isMetaClass());
Class supercls;
bool reallyInitialize = NO;
// Make sure super is done initializing BEFORE beginning to initialize cls.
// See note about deadlock above.
//获得父类
supercls = cls->superclass;
//存在父类对象并且父类没有初始化,执行递归初始化方法,给父类初始化
if (supercls && !supercls->isInitialized()) {
_class_initialize(supercls);
}
// Try to atomically set CLS_INITIALIZING.
{
monitor_locker_t lock(classInitLock);
//如果传进来的类没有初始化,就给类初始化并且reallyInitialize设置为YES
if (!cls->isInitialized() && !cls->isInitializing()) {
cls->setInitializing();
reallyInitialize = YES;
}
}
///已经初始化了
if (reallyInitialize) {
// We successfully set the CLS_INITIALIZING bit. Initialize the class.
// Record that we're initializing this class so we can message it.
_setThisThreadIsInitializingClass(cls);
if (MultithreadedForkChild) {
// LOL JK we don't really call +initialize methods after fork().
performForkChildInitialize(cls, supercls);
return;
}
// Send the +initialize message.
// Note that +initialize is sent to the superclass (again) if
// this class doesn't implement +initialize. 2157218
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: calling +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
// Exceptions: A +initialize call that throws an exception
// is deemed to be a complete and successful +initialize.
//
// Only __OBJC2__ adds these handlers. !__OBJC2__ has a
// bootstrapping problem of this versus CF's call to
// objc_exception_set_functions().
#if __OBJC2__
@try
#endif
{
//调用类的初始化方法,是在给类cls发送一个SEL_initialize消息
callInitialize(cls);
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
}
#if __OBJC2__
@catch (...) {
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: +[%s initialize] "
"threw an exception",
pthread_self(), cls->nameForLogging());
}
@throw;
}
@finally
#endif
{
// Done initializing.
lockAndFinishInitializing(cls, supercls);
}
return;
}
else if (cls->isInitializing()) {
// We couldn't set INITIALIZING because INITIALIZING was already set.
// If this thread set it earlier, continue normally.
// If some other thread set it, block until initialize is done.
// It's ok if INITIALIZING changes to INITIALIZED while we're here,
// because we safely check for INITIALIZED inside the lock
// before blocking.
if (_thisThreadIsInitializingClass(cls)) {
return;
} else if (!MultithreadedForkChild) {
waitForInitializeToComplete(cls);
return;
} else {
// We're on the child side of fork(), facing a class that
// was initializing by some other thread when fork() was called.
_setThisThreadIsInitializingClass(cls);
performForkChildInitialize(cls, supercls);
}
}
else if (cls->isInitialized()) {
// Set CLS_INITIALIZING failed because someone else already
// initialized the class. Continue normally.
// NOTE this check must come AFTER the ISINITIALIZING case.
// Otherwise: Another thread is initializing this class. ISINITIALIZED
// is false. Skip this clause. Then the other thread finishes
// initialization and sets INITIALIZING=no and INITIALIZED=yes.
// Skip the ISINITIALIZING clause. Die horribly.
return;
}
else {
// We shouldn't be here.
_objc_fatal("thread-safe class init in objc runtime is buggy!");
}
}
3、当子类不实现 + initialize方法父类实现了 + initialize方法
- 父类RevanPerson
#import <Foundation/Foundation.h>
@interface RevanPerson : NSObject
@end
#import "RevanPerson.h"
@implementation RevanPerson
+ (void)initialize {
NSLog(@"RevanPerson + initialize");
}
@end
- 子类RevanStudent
#import "RevanPerson.h"
@interface RevanStudent : RevanPerson
@end
#import "RevanStudent.h"
@implementation RevanStudent
@end
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
#import "RevanStudent.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
[RevanStudent alloc];
[RevanPerson alloc];
}
@end
代码输出:
2018-07-03 02:43:32.157267+0800 04-initialize[14409:889050] RevanPerson + initialize
2018-07-03 02:43:32.157466+0800 04-initialize[14409:889050] RevanPerson + initialize
- 会发现调用了2次父类中的+ initialize方法
- 原理分析
- 当[RevanStudent alloc]的时候,通过上面的源码分析可知
- RevanStudent是否需要初始化,如果需要初始化
- 查看RevanStudent是否有父类,并且查看父类是否需要初始化,如果需要先给父类初始化,由于+ initialize方法的底层实现时给类发送了一个initialize消息,所以第一次打印是RevanStudent父类的初始化
- RevanStudent父类初始化完成后,才会会RevanStudent类初始化,所以会给RevanStudent类发送一个initialize消息,这时会通过isa指针找到RevanStudent的meta-class对象,从类方法列表中查找,发现没有,在通过meta-class对象中的superclass找的父类RevanPerson的meta-class对象并且从类方法列表中查找initialize方法,如果有就实行调用。所以第二次打印的RevanPerson + initialize是RevanStudent触发的
- RevanStudent是否需要初始化,如果需要初始化
- 当[RevanStudent alloc]的时候,通过上面的源码分析可知
六、load、initialize方法小结
-
1.调用方式
- load是根据函数地址直接调用
- initialize是通过objc_msgSend调用
-
2.调用时刻
- load是runtime加载类、分类的时候调用(只会调用1次)
- initialize是类第一次接收到消息的时候调用,每一个类只会initialize一次
- 父类的initialize方法可能会被调用多次,但只initialize一次
-
3.load、initialize的调用顺序?
-
1.load
- 先调用类的load
- 先编译的类,优先调用load
- 调用子类的load之前,会先调用父类的load
-
1.2.再调用分类的load
- 先编译的分类,优先调用load
-
2.initialize
- 先初始化父类
- 再初始化子类(可能最终调用的是父类的initialize方法)
-