focal loss

2021-10-07  本文已影响0人  三方斜阳

先验知识:交叉熵 - 简书 (jianshu.com)

理解:

针对类别不均衡问题,作者提出一种新的损失函数:focal loss,这个损失函数是在标准交叉熵损失基础上修改得到的。这个函数可以通过减少易分类样本的权重,使得模型在训练时更专注于难分类的样本。Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。

例如gamma为2,对于正类样本而言,预测结果为0.95肯定是简单样本,所以(1-0.95)的gamma次方就会很小,这时损失函数值就变得更小。而预测概率为0.3的样本其损失相对很大。对于负类样本而言同样,预测0.1的结果应当远比预测0.7的样本损失值要小得多。对于预测概率为0.5时,损失只减少了0.25倍,所以更加关注于这种难以区分的样本。这样减少了简单样本的影响,大量预测概率很小的样本叠加起来后的效应才可能比较有效。

focal loss实现

import torch

class FocalLoss:
    def __init__(self, alpha_t=None, gamma=0):
        """
        :param alpha_t: A list of weights for each class
        :param gamma:
        """
        self.alpha_t = torch.tensor(alpha_t) if alpha_t else None
        self.gamma = gamma

    def __call__(self, outputs, targets):
        if self.alpha_t is None and self.gamma == 0:
            focal_loss = torch.nn.functional.cross_entropy(outputs, targets)

        elif self.alpha_t is not None and self.gamma == 0:
            if self.alpha_t.device != outputs.device:
                self.alpha_t = self.alpha_t.to(outputs)
            focal_loss = torch.nn.functional.cross_entropy(outputs, targets,weight=self.alpha_t)

        elif self.alpha_t is None and self.gamma != 0:
            ce_loss = torch.nn.functional.cross_entropy(outputs, targets, reduction='none')
            p_t = torch.exp(-ce_loss)
            focal_loss = ((1 - p_t) ** self.gamma * ce_loss).mean()

        elif self.alpha_t is not None and self.gamma != 0:
            if self.alpha_t.device != outputs.device:
                self.alpha_t = self.alpha_t.to(outputs)
            ce_loss = torch.nn.functional.cross_entropy(outputs, targets, reduction='none')
            p_t = torch.exp(-ce_loss)
            ce_loss = torch.nn.functional.cross_entropy(outputs, targets,weight=self.alpha_t, reduction='none')
            focal_loss = ((1 - p_t) ** self.gamma * ce_loss).mean()  # mean over the batch

        return focal_loss
import torch.nn.functional as F
import torch.nn as nn
if __name__ == '__main__':
    outputs = torch.tensor([[2, 1.],
                [2.5, 1]], device='cuda')
    targets = torch.tensor([0, 1], device='cuda')
    print(torch.nn.functional.softmax(outputs, dim=1))

    fl= FocalLoss([0.5, 0.5], 2)
    loss = F.cross_entropy(outputs, targets)
    print(loss)
    print(fl(outputs, targets))
#!/usr/bin/env python3
# -*- coding: utf-8 -*-


from typing import List

import torch
import torch.nn as nn
import torch.nn.functional as F


class FocalLoss(nn.Module):
    """
    Focal loss(https://arxiv.org/pdf/1708.02002.pdf)
    Shape:
        - input: (N, C)
        - target: (N)
        - Output: Scalar loss
    Examples:
        >>> loss = FocalLoss(gamma=2, alpha=[1.0]*7)
        >>> input = torch.randn(3, 7, requires_grad=True)
        >>> target = torch.empty(3, dtype=torch.long).random_(7)
        >>> output = loss(input, target)
        >>> output.backward()
    """
    def __init__(self, gamma=0, alpha: List[float] = None, reduction="none"):
        super(FocalLoss, self).__init__()
        self.gamma = gamma
        self.alpha = alpha
        if alpha is not None:
            self.alpha = torch.FloatTensor(alpha)
        self.reduction = reduction

    def forward(self, input, target):
        # [N, 1]
        m=nn.CrossEntropyLoss()
        print(m(input,target))
        target = target.unsqueeze(-1)
        print("target1:",target)
        # [N, C]
        pt = F.softmax(input, dim=-1)
        print('pt1:',pt)
        logpt = F.log_softmax(input, dim=-1)
        print('logpt1:',logpt)
        # [N]
        print('zhangyi:',pt.gather(1, target))
        pt = pt.gather(1, target).squeeze(-1)
        print('pt2:',pt)
        logpt = logpt.gather(1, target).squeeze(-1)
        print('logpt2:',logpt)

        if self.alpha is not None:
            # [N] at[i] = alpha[target[i]]
            print("target.squeeze(-1)",target.squeeze(-1))
            at = self.alpha.gather(0, target.squeeze(-1))
            print('at1',at)
            print('logpt3',logpt)
            logpt = logpt * at
            print('logpt3',logpt)

        loss = -1 * (1 - pt) ** self.gamma * logpt
        if self.reduction == "none":
            return loss
        if self.reduction == "mean":
            return loss.mean()
        return loss.sum()

    @staticmethod
    def convert_binary_pred_to_two_dimension(x, is_logits=True):
        """
        Args:
            x: (*): (log) prob of some instance has label 1
            is_logits: if True, x represents log prob; otherwhise presents prob
        Returns:
            y: (*, 2), where y[*, 1] == log prob of some instance has label 0,
                             y[*, 0] = log prob of some instance has label 1
        """
        probs = torch.sigmoid(x) if is_logits else x
        probs = probs.unsqueeze(-1)
        probs = torch.cat([1-probs, probs], dim=-1)
        logprob = torch.log(probs+1e-4)  # 1e-4 to prevent being rounded to 0 in fp16
        return logprob

    def __str__(self):
        return f"Focal Loss gamma:{self.gamma}"

    def __repr__(self):
        return str(self)

loss = FocalLoss(gamma=2, alpha=[1.0]*7)
input = torch.randn(3, 7, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(7)
print(input)
print(target)
output = loss(input, target)
print(output)
# output.backward()

论文:
https://arxiv.org/pdf/1708.02002.pdf
一些博客:
Focal loss论文详解 - 知乎 (zhihu.com)
Focal Loss理解 - 三年一梦 - 博客园 (cnblogs.com)

上一篇下一篇

猜你喜欢

热点阅读