Java

面试官:多线程事务如何保证效率和原子性

2023-02-01  本文已影响0人  互联网高级架构师

多线程事务

在Spring开发时,遇到一个从Excel表导入数据到数据库的需求,当然最简单的方法就是先使用EasyExcel把数据读出到集合中,然后依次插入到数据库中。

但如何保证效率,原子性呢?我们一步步优化方案。这里不会引入不必要的组件,而是自己模拟类似的思想。

方法1:依次顺序插入

void test() {
        List<User> users = getAllUsers();
        users.forEach(user -> userService.save(user));
    }

方法2:使用批处理,一次操作中执行多条SQL

void test() {
    List<User> users = getAllUsers();
    userService.saveBatch(users);
}

方法3:使用多线程+批处理,每个线程插入多条数据

需要注意的一点,Spring容器不允许线程注入,也就是没办法在多线程直接使用Bean操作,例如:

void testThread() {
// 下面两种方式是无效的,不会执行任何东西
Runnable runnable = () -> {
         userService.save(new User());
     };
// 方法1
new Thread(runnable).start();
// 方法2
Executors.newFixedThreadPool(1).submit(runnable);
}

我们需要下面的方式进行执行

void testThread() {
     Runnable runnable = () -> {
         userService.save(new User());
     };
     ExecutorService executorService = Executors.newFixedThreadPool(1);
     CompletableFuture<Void> future = CompletableFuture.runAsync(runnable, executorService);
     future.join();
 }
void testThread() {
    int threadSize = 5;
    ExecutorService executorService = Executors.newFixedThreadPool(threadSize);
    List<List<User>> list = new ArrayList<>();
    for (int i = 0; i < threadSize; i++) {
        // 我们假设数据拆分为五分
        list.add(getAllUsers());
    }
    for (List<User> users : list) {
        CompletableFuture.runAsync(()->{
            userService.saveBatch(users);
        },executorService).join();
    }
    System.out.println("插入成功");
}

方法4:这时候速度已经很快了,但是如果其中一个线程插入数据时发生错误进行回滚,其他线程是无法得知的,因为事务是针对线程的,所以这里我们需要用一些方式保证每个线程之间的状态是被共享的。

// UserService#saveUserSyn()
@Override
public boolean saveUserSyn(List<User> users, CountDownLatch threadLatch, CountDownLatch mainLatch, UserError hasError) {
        TransactionStatus transactionStatus = dataSourceTransactionManager.getTransaction(transactionDefinition);
        System.out.println("子线程:" + Thread.currentThread().getName());
        try {
            users.forEach(this::save);
        } catch (Throwable e) {
            hasError.setHasError(true);
        } finally {
            threadLatch.countDown(); // 切换到主线程执行
        }
        try {
            mainLatch.await();  //等待主线程执行
        } catch (Throwable e) {
            hasError.setHasError(true);
        }
        // 判断是否有错误,如有错误 就回滚事务
        if (hasError.isHasError()) {
            dataSourceTransactionManager.rollback(transactionStatus);
        } else {
            dataSourceTransactionManager.commit(transactionStatus);
        }
        return true;
    }
// 测试方法
@Test
    void userSaveSyn() {

        List<User> userList = getAllUsers();

        // 添加一个错误数据
        User user = new User();
        user.setUserAccount(null);
        user.setUserPassword("123456");
        userList.add(user);

        // 线程数量
        final Integer threadCount = 4;

        //每个线程处理的数据量
        final Integer dataPartionLength = (userList.size() + threadCount - 1) / threadCount;

        // 创建多线程处理任务
        ExecutorService studentThreadPool = Executors.newFixedThreadPool(threadCount);
        CountDownLatch threadLatchs = new CountDownLatch(threadCount); // 用于计算子线程提交数量
        CountDownLatch mainLatch = new CountDownLatch(1); // 用于判断主线程是否提交

        for (int i = 0; i < threadCount; i++) {
            // 每个线程处理的数据
            List<User> threadDatas = userList.stream()
                    .skip(i * dataPartionLength).limit(dataPartionLength)
                    .collect(Collectors.toList());
            studentThreadPool.execute(() -> {
                userService.saveUserSyn(threadDatas, threadLatchs, mainLatch, hasError);
            });
        }

        try {
            // 倒计时锁设置超时时间 30s
            boolean await = threadLatchs.await(30, TimeUnit.SECONDS);
            if (!await) { // 等待超时,事务回滚
                hasError.setHasError(true);
            }
        } catch (Throwable e) {
            e.printStackTrace();
            hasError.setHasError(true);
        }
        mainLatch.countDown(); // 切换到子线程执行
        studentThreadPool.shutdown(); //关闭线程池
        System.out.println("主线程完成");
    }

这里我们使用 CountDownLatch 和 Volatile 来解决这个问题。

Volatile 保证线程间数据的可见性

2PC(两阶段提交),这个属于分布式事务的一个理论,这里模拟了这样的业务场景,大致流程为:

这里细心些就会发现,即便是主线程通知子线程可以提交了,子线程依然有可能出现提交失败的可能,那其他线程提交事务是无法得知这边的失败的消息的。这就是我们其实无法在一个Java进程中保证多线程的原子性。

作者:啵啵肠
链接:https://juejin.cn/post/7195078084830167097
来源:稀土掘金

上一篇下一篇

猜你喜欢

热点阅读