HashMap
2018-11-07 本文已影响0人
剑书藏于西
HashMap的底层主要是基于数组和链表来实现的,主要是通过key的hashCode来计算hash值的,只要hashCode相同,计算出来的hash值就一样。如果存储的对象对多了,就有可能不同的对象所算出来的hash值是相同的,这就出现了所谓的hash冲突/碰撞。HashMap底层是通过链表来解决hash冲突的。
/** Entry是单向链表。
* 它是 “HashMap链式存储法”对应的链表。
* 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value),
* equals(Object o), hashCode()这些函数
**/
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
// 指向下一个节点
Entry<K,V> next;
final int hash;
// 构造函数。
// 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 判断两个Entry是否相等
// 若两个Entry的“key”和“value”都相等,则返回true。
// 否则,返回false
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
// 实现hashCode()
public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
// 当向HashMap中添加元素时,绘调用recordAccess()。
// 这里不做任何处理
void recordAccess(HashMap<K,V> m) {
}
// 当从HashMap中删除元素时,绘调用recordRemoval()。
// 这里不做任何处理
void recordRemoval(HashMap<K,V> m) {
}
}
HashMap其实就是一个Entry数组,Entry对象中包含了键和值,其中next也是一个Entry对象,它就是用来处理hash冲突的,形成一个链表。
public HashMap(int initialCapacity, float loadFactor) {
//确保数字合法
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// Find a power of 2 >= initialCapacity
int capacity = 1; //初始容量
while (capacity < initialCapacity) //确保容量为2的n次幂,使capacity为大于initialCapacity的最小的2的n次幂
capacity <<= 1;
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
table = new Entry[capacity];
init();
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
public V put(K key, V value) {
// 若“key为null”,则将该键值对添加到table[0]中。
if (key == null)
return putForNullKey(value);
// 若“key不为null”,则计算该key.hashCode()的哈希值,然后将其添加到该哈希值对应的链表中。
int hash = hash(key.hashCode());
//搜索指定hash值在对应table中的索引
int i = indexFor(hash, table.length);
// 循环遍历Entry数组,若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
//如果key相同则覆盖并返回旧值
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
//修改次数+1
modCount++;
//将key-value添加到table[i]处
addEntry(hash, key, value, i);
return null;
}
static int indexFor(int h, int length) {
//根据hash值和数组长度算出索引值
// h&(length-1)==h%length (求余数)
return h & (length-1);
//这里不能随便算取,用hash&(length-1)是有原因的,这样可以确保算出来的索引是在数组大小范围内,不会超出
}
void addEntry(int hash, K key, V value, int bucketIndex) {
//链表的头插法,将原来头位置的Entry设置成新Entry的下一个节点
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
if (size++ >= threshold) //如果大于临界值就扩容
resize(2 * table.length); //以2的倍数扩容
}
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
transfer(newTable);//用来将原先table的元素全部移到newTable里面
table = newTable; //再将newTable赋值给table
threshold = (int)(newCapacity * loadFactor);//重新计算临界值
}
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for(int j=0;j<src.length;j++) {
Entry<K, V> e = src[j];
if(e!=null) {
src[j]=null;
do {
Entry<K, V> next = e.next; //保存下一次循环的Entry
int i = indexFor(e.hash, newCapacity); //计算新table需要插入的位置
//头插法,原位置上的Entry设置成新节点的next
e.next = newTable[i];
//新节点占据原位置
newTable[i] = e;
//轮替,下一次循环
e = next;
} while(e!=null);
}
}
}