hashMap 源码分析

2021-09-10  本文已影响0人  java_飞
//new HashMap时只是对设置的大小进行一些判断,
  public HashMap(int initialCapacity, float loadFactor) {
      //如果小于0则报错,
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
      //如果大于2的30次就默认设置为2的30次
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
      //如果小于0 或者 不是数字 则报错
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
      //设置的是hashmap临界值的大小,初始时设置的大小跟capacity一样
        this.threshold = tableSizeFor(initialCapacity);
    }

-------------------------------------------------------------------------------------------------------------
  
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果当前的node表没有初始化,则进行初始化,说明hashmap初始化是在put的时候
        if ((tab = table) == null || (n = tab.length) == 0)
            //resize() 初始化方法
            n = (tab = resize()).length;
            //判断元素hashcode的 tab位置是否为空
        if ((p = tab[i = (n - 1) & hash]) == null)
          //为空就new一个node 放置进去
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //判断是不是同一个key,通过hashcode 和equal比较 
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
              //替换原有位置的值
                e = p;
            //判断是否是树节点
            else if (p instanceof TreeNode)
              //进行树节点的插入操作
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
              //这里代表是hash冲突的链表操作,
              //先进行死循环
                for (int binCount = 0; ; ++binCount) {
                  //判断当前节点链表的第一个位置是否为null
                    if ((e = p.next) == null) {
                      //链表节点的插入操作 new Node
                        p.next = newNode(hash, key, value, null);
                      //插入完后紧接着判断是否大于等于7    如果大于等于7则进行树的转换操作
                      //这里说明链表长度一旦达到8就开始将链表转换成树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                          //树的转换操作 
                          treeifyBin(tab, hash);
                        break;
                    }
                  //判断链表里的key是不是同一个,如果是的话就退出循环
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                  //走到这里说明当前节点的next节点不为空,赋值,进行下一轮
                    p = e;
                }
            }
          //这里是对链表里的元素与将要插入的值一样时,进行value的替换
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
              //onlyIfAbsent 当key一样时,是否替换原有的值,如果为true 则不进行替换
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
              //回调以允许 LinkedHashMap 后操 ,这里hashMap没有实现
                afterNodeAccess(e);
                return oldValue;
            }
        }
            //hashmap结构修改的次数,作用是,当遍历集合时,集合发生了变化,进行fail-fast
        ++modCount;
            //如果当前hashmap大小大于负载因子乘以容量的大小时,进行扩容
            //这里可以知道是在put结束后进行扩容的
        if (++size > threshold)
            resize();
            //空实现,hashmap不用考虑
        afterNodeInsertion(evict);
        return null;
    }
-------------------------------------------------------------------------------------------------------------

        //初始化hashmap+以及对hashmap进行扩容
    final Node<K,V>[] resize() {
            //记录扩容前的table
        Node<K,V>[] oldTab = table;
            //记录扩容前的table大小
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
            //记录扩容前的大小临界值
        int oldThr = threshold;
        int newCap, newThr = 0;
            //大于0 说明时扩容场景
        if (oldCap > 0) {
          //当扩容前容量大于等于MAXIMUM_CAPACITY (MAXIMUM_CAPACITY=2^30)
            if (oldCap >= MAXIMUM_CAPACITY) {
              //临界值直接设为int的最大值
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
          //oldCap << 1 表示将原来大小乘以2 也就是翻倍
          //当2倍后的新容量小于最大值且老容量大于等于默认值时,
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
              //容量临界值也直接扩大2倍
                newThr = oldThr << 1; // double threshold
        }
            //如果
        else if (oldThr > 0) // initial capacity was placed in threshold
          //new hashmap时设置了大小就会走到这里
            newCap = oldThr;
        else {               
          // zero initial threshold signifies using defaults
          //初始化场景,new hashmap时没有设置大小
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
                //两种情况会走到这里
            //1.扩容前大小大于等于MAXIMUM_CAPACITY
            //2.new hashmap设置了大小,初始化时重新计算hashmap临界值
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
            //计算新的扩容临界值,加负载因子*capacity 例如0.75*16=12
        threshold = newThr;
            //new 一个32容量的新tab
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            //赋给原来的table
        table = newTab;
            //这里是具体扩容后key的移动
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
              //判断对应索引位置的元素是否为空
                if ((e = oldTab[j]) != null) {
                  //将老的位置置为null
                    oldTab[j] = null;
                  //判断该位置元素是否存在链表
                    if (e.next == null)
                      //不存在的话,就重新计算hash值放入新的tab
                        newTab[e.hash & (newCap - 1)] = e;
                    //存在,则判断是否为树节点
                    else if (e instanceof TreeNode)
                        //进行树节点的操作
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //以下操作就是循环将链表元素进行重新计算放入新的tab中,详细不再描述,
                        //由下面可以知道元素在新tab中如果不在原来位置,则可能在原有位置+原来capacity
                        //注意:这里也就存在着线程安全的问题,并发时对链表的元素的rehash可能造成死循环,
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

-------------------------------------------------------------------------------------------------------------

//将node节点转换为TreeNode节点,并调用红黑树转换方法
 final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
   //这里说明并不是链表长度到达8就开始换成树的,还有其他条件,只有当tab的capacity大于等于MIN_TREEIFY_CAPACITY时,才会进行转换成红黑树的操作,否则将对hashmap进行扩容,(MIN_TREEIFY_CAPACITY=64)
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
          //循环 将原来链表的node类型变成TreeNode类型,再以链表结构组装起来
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
              //树转换
                hd.treeify(tab);
        }
    }


-------------------------------------------------------------------------------------------------------------

            //红黑树转换方法
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
                //对TreeNode类型的链表进行循环
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
              //获取当前节点的下一个
                next = (TreeNode<K,V>)x.next;
              //设置当前节点的左右子树为null
                x.left = x.right = null;
                //如果root节点为空
                if (root == null) {
                  //将当前节点设置为root节点,没有父节点,同时时黑色节点
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                      //这里就是判断当前key与树上节点key的比较
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                          //如果hash一致,且类名一致,就通过系统hashcode计算
                            dir = tieBreakOrder(k, pk);
                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

-------------------------------------------------------------------------------------------------------------
//平衡插入树节点方法,不平衡时对树的左旋 或者右旋,以及着色
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
              //插入节点的父节点为空,则插入节点作为root节点返回
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
              //插入节点的父节点是黑色或者插入节点的爷爷节点是空,则返回原来的root节点
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                //插入节点的父节点==插入节点的爷爷节点的左节点
                if (xp == (xppl = xpp.left)) {
                  //插入节点的爷爷节点的右节点不为空且为红色
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        //插入节点=插入节点父节点的右节点
                        if (x == xp.right) {
                          //进行树的左旋
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                      //插入节点父节点不为空
                        if (xp != null) {
                            xp.red = false;
                          //插入节点的爷爷节点不为空
                            if (xpp != null) {
                                xpp.red = true;
                              //进行树的右旋
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

-------------------------------------------------------------------------------------------------------------

        //树的左旋 
    //左旋是将当前p节点下放到它的右节点,同时将右节点上移到p节点所在位置
   static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
              //p节点下放到它的右节点
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                //如果p节点以及它的右节点都没有爷爷节点,说明p节点为root
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    //将右节点替换为它的父节点
                    pp.left = r;
                else
                    //将右节点替换为它的父节点
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

-------------------------------------------------------------------------------------------------------------
    //树的右旋
  //右旋是将当前p节点下放到它的左节点,同时将左节点上移到p节点所在位置  
  static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                               TreeNode<K,V> p) {
            TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
              //p节点下放到它的左节点
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                   //将左节点替换为它的父节点
                    pp.right = l;
                else
                     //将左节点替换为它的父节点
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

-------------------------------------------------------------------------------------------------------------

                //确保给定的根是其 bin 的第一个节点
        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                if (root != first) {
                    Node<K,V> rn;
                    tab[index] = root;
                    TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }
-------------------------------------------------------------------------------------------------------------

            //树节点插入,跟链表转树方法中的插入一样
       final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

说明

1.new HashMap,其实只是指定了临界值参数的大小
2.put操作时才是真正初始化了hashmap,同时也将new 时设置的参数设置为hashmap大小,并重新计算临界值大小
 2.1.如果为hashmap未初始化,则进行初始化;
 2.2.如果对应位置为空,则直接newNode插入
 2.3 如果是hash一样,则判断是否为同一个key,如果是直接替换value
 2.4 如果是树节点,进行树的put操作,里面涉及了树的平衡,着色,左右旋转等
 2.5 如果是链表且长度小于8时,则newNode,原来key位置用链表结构连接上
 2.6 判断链表长度是否大于7,如果大于则进行树的转换
  2.6.1树转换时,先判断hashmap大小,如果小于64,则进行扩容
  2.6.2 链表转树时,先将node链表转换为treeNode链表,然后再进行树的转换,树转换原来就是通过key的比较进行树的构造
 2.7 如果链表上的key与插入的key一致时,退出循环,然后替换链表上的值
 2.8 正常插入后也会判断下当前hashmap大小是否超过临界值,只有超过临界值时才进行扩容

这里树的构造以及红黑色的着色,左右旋转就不做赘述,想要了解的可以自行查阅源码

上一篇下一篇

猜你喜欢

热点阅读