SwiftSwift基础

iOS开发-Swift进阶之内存管理 & Runtime!

2021-05-29  本文已影响0人  iOS鑫

swift进阶总汇

本文主要介绍swift中的内存管理,涉及引用计数、弱引用、强引用、循环引用、Runtime等


内存管理 - 强引用

在swift中也是使用ARC来追踪和管理内存的,下面我们通过一个案例来进行分析

class CJLTeacher {
    var age: Int = 18
    var name: String = "CJL"
}
var t = CJLTeacher()
var t1 = t
var t2 = t

在分析类时(参考这篇文章Swift-进阶 02:类、对象、属性)有这么一个类HeapObject,下面继续通过这个类来分析t的引用计数

struct HeapObject {
  HeapMetadata const *metadata;

  SWIFT_HEAPOBJECT_NON_OBJC_MEMBERS;
  ...
}
👇
#define SWIFT_HEAPOBJECT_NON_OBJC_MEMBERS       \
  InlineRefCounts refCounts
typedef RefCounts<InlineRefCountBits> InlineRefCounts;
👇
template <typename RefCountBits>
class RefCounts {
  std::atomic<RefCountBits> refCounts;
  ...
}
typedef RefCountBitsT<RefCountIsInline> InlineRefCountBits;
template <RefCountInlinedness refcountIsInline>
class RefCountBitsT {
    ...
      typedef typename RefCountBitsInt<refcountIsInline, sizeof(void*)>::Type
    BitsType;
    ...
    BitsType bits;
    ...
}
👇
template <>
struct RefCountBitsInt<RefCountNotInline, 4> {
  //类型
  typedef uint64_t Type;
  typedef int64_t SignedType;
};

其中bits其实质是将RefCountBitsInt中的type属性取了一个别名,所以bits的真正类型是uint64_t64位整型数组

然后来继续分析swift中对象创建的底层方法swift_allocObject

static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
                                       size_t requiredSize,
                                       size_t requiredAlignmentMask) {
    ...
    new (object) HeapObject(metadata);
    ...
}
👇
<!--构造函数-->
 constexpr HeapObject(HeapMetadata const *newMetadata) 
    : metadata(newMetadata)
    , refCounts(InlineRefCounts::Initialized)
  { }
   enum Initialized_t { Initialized };
  
  //对应的RefCounts方法
// Refcount of a new object is 1.
constexpr RefCounts(Initialized_t)
: refCounts(RefCountBits(0, 1)) {}

从这里看出真正干事的是RefCountBits

作为一个开发者,有一个学习的氛围跟一个交流圈子特别重要,这是一个我的iOS开发交流群:130 595 548,不管你是小白还是大牛都欢迎入驻 ,让我们一起进步,共同发展!(群内会免费提供一些群主收藏的免费学习书籍资料以及整理好的几百道面试题和答案文档!)

template <typename RefCountBits>
class RefCounts {
  std::atomic<RefCountBits> refCounts;
  ...
}

所以真正的初始化地方是下面这个,实际上是做了一个位域操作,根据的是Offsets

LLVM_ATTRIBUTE_ALWAYS_INLINE
constexpr
RefCountBitsT(uint32_t strongExtraCount, uint32_t unownedCount)
: bits((BitsType(strongExtraCount) << Offsets::StrongExtraRefCountShift) |
       (BitsType(1)                << Offsets::PureSwiftDeallocShift) |
       (BitsType(unownedCount)     << Offsets::UnownedRefCountShift))
{ }

分析RefCountsBit的结构,如下所示,

重点关注UnownedRefCountStrongExtraRefCount

分析SIL代码

//SIL中的main
alloc_global @main.t1 : main.CJLTeacher       // id: %8
%9 = global_addr @main.t1 : main.CJLTeacher : $*CJLTeacher // user: %11
%10 = begin_access [read] [dynamic] %3 : $*CJLTeacher // users: %12, %11
copy_addr %10 to [initialization] %9 : $*CJLTeacher // id: %11

//其中copy_addr等价于
- %new = load s*LGTeacher
- strong_retain %new
- store %new to %9

SIL官方文档中关于copy_addr的解释如下

//内部是一个宏定义
HeapObject *swift::swift_retain(HeapObject *object) {
  CALL_IMPL(swift_retain, (object));
}
👇
//本质调用的就是 _swift_retain_
static HeapObject *_swift_retain_(HeapObject *object) {
  SWIFT_RT_TRACK_INVOCATION(object, swift_retain);
  if (isValidPointerForNativeRetain(object))
    object->refCounts.increment(1);
  return object;
}
👇
void increment(uint32_t inc = 1) {
    auto oldbits = refCounts.load(SWIFT_MEMORY_ORDER_CONSUME);
    
    // constant propagation will remove this in swift_retain, it should only
    // be present in swift_retain_n
    if (inc != 1 && oldbits.isImmortal(true)) {
      return;
    }
    //64位bits
    RefCountBits newbits;
    do {
      newbits = oldbits;
      bool fast = newbits.incrementStrongExtraRefCount(inc);
      if (SWIFT_UNLIKELY(!fast)) {
        if (oldbits.isImmortal(false))
          return;
        return incrementSlow(oldbits, inc);
      }
    } while (!refCounts.compare_exchange_weak(oldbits, newbits,
                                              std::memory_order_relaxed));
  }
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE
bool incrementStrongExtraRefCount(uint32_t inc) {
// This deliberately overflows into the UseSlowRC field.
// 对inc做强制类型转换为 BitsType
// 其中 BitsType(inc) << Offsets::StrongExtraRefCountShift 等价于 1<<33位,16进制为 0x200000000
//这里的 bits += 0x200000000,将对应的33-63转换为10进制,为
bits += BitsType(inc) << Offsets::StrongExtraRefCountShift;
return (SignedBitsType(bits) >= 0);
}

例如以trefCounts为例(其中62-33位是strongCount,每次增加强引用计数增加都是在33-62位上增加的,固定的增量为1左移33位,即0x200000000

为什么是0x200000000
因为1左移33位,其中4位为一组,计算成16进制,剩余的33-32位0x10,转换为10进制为2。其实际增加引用技术就是1

swift与OC强引用计数对比

内存管理 - 弱引用

以下面为例:

class CJLTeacher {
    var age: Int = 18
    var name: String = "CJL"
    var stu: CJLStudent?
}

class CJLStudent {
    var age = 20
    var teacher: CJLTeacher?
}

func test(){
    var t = CJLTeacher()
    weak var t1 = t
}
WeakReference *swift::swift_weakInit(WeakReference *ref, HeapObject *value) {
  ref->nativeInit(value);
  return ref;
}
void nativeInit(HeapObject *object) {
auto side = object ? object->refCounts.formWeakReference() : nullptr;
nativeValue.store(WeakReferenceBits(side), std::memory_order_relaxed);
}
template <>
HeapObjectSideTableEntry* RefCounts<InlineRefCountBits>::formWeakReference()
{
  //创建 sideTable
  auto side = allocateSideTable(true);
  if (side)
  // 如果创建成功,则增加弱引用
    return side->incrementWeak();
  else
    return nullptr;
}
template <>
HeapObjectSideTableEntry* RefCounts<InlineRefCountBits>::allocateSideTable(bool failIfDeiniting)
{
  // 1、先拿到原本的引用计数
  auto oldbits = refCounts.load(SWIFT_MEMORY_ORDER_CONSUME);
  
  // Preflight failures before allocating a new side table.
  if (oldbits.hasSideTable()) {
    // Already have a side table. Return it.
    return oldbits.getSideTable();
  } 
  else if (failIfDeiniting && oldbits.getIsDeiniting()) {
    // Already past the start of deinit. Do nothing.
    return nullptr;
  }

  // Preflight passed. Allocate a side table.
  
  // FIXME: custom side table allocator
  //2、创建sideTable
  HeapObjectSideTableEntry *side = new HeapObjectSideTableEntry(getHeapObject());
  // 3、将创建的地址给到InlineRefCountBits
  auto newbits = InlineRefCountBits(side);
  
  do {
    if (oldbits.hasSideTable()) {
      // Already have a side table. Return it and delete ours.
      // Read before delete to streamline barriers.
      auto result = oldbits.getSideTable();
      delete side;
      return result;
    }
    else if (failIfDeiniting && oldbits.getIsDeiniting()) {
      // Already past the start of deinit. Do nothing.
      return nullptr;
    }
    
    side->initRefCounts(oldbits);
    
  } while (! refCounts.compare_exchange_weak(oldbits, newbits,
                                             std::memory_order_release,
                                             std::memory_order_relaxed));
  return side;
}

0xc000000020809a6c为例,将62、63位清零,变成0x20809A6C,然后左移3位(即InlineRefCountBits初始化方法),变成0x10404D360HeapObjectSideTableEntry对象地址,即散列表地址,然后通过x/8g读取

问题:如果此时再加一个强引用t2
查看其refCounts,t2是执行了strong_retain

总结

对于HeapObject来说,其refCounts有两种:

HeapObject {
    InlineRefCountBit {strong count + unowned count }
    
    HeapObjectSideTableEntry{
        HeapObject *object
        xxx
        strong Count + unowned Count(uint64_t)//64位
        weak count(uint32_t)//32位
    }
}

内存管理 - 循环引用

主要是研究闭包捕获外部变量,以下面代码为例

var age = 10
let clourse = {
    age += 1
}
clourse()
print(age)

<!--打印结果-->
11

从输出结果中可以看出:闭包内部对变量的修改将会改变外部原始变量的值,主要原因是闭包会捕获外部变量,这个与OC中的block是一致的

class CJLTeacher {
    var age = 18
    //反初始化器(当前实例对象即将被回收)
    deinit {
        print("CJLTeacher deinit")
    }
}
func test(){
    var t = CJLTeacher()
}
test()

<!--打印结果-->
CJLTeacher deinit
class CJLTeacher {
    var age = 18
    //反初始化器(当前实例对象即将被回收)
    deinit {
        print("CJLTeacher deinit")
    }
}
var t = CJLTeacher()
let clourse = {
    t.age += 1
}
clourse()

<!--打印结果-->
11
class CJLTeacher {
    var age = 18
    deinit {
        print("CJLTeacher deinit")
    }
}

func test(){
    var t = CJLTeacher()
    let clourse = {
        t.age += 1
    }
    clourse()
}
test()

<!--运行结果-->
CJLTeacher deinit

运行结果发现,闭包对 t 并没有强引用

class CJLTeacher {
    var age = 18
    
    var completionBlock: (() ->())?
    
    deinit {
        print("CJLTeacher deinit")
    }
}

func test(){
    var t = CJLTeacher()
    t.completionBlock = {
        t.age += 1
    }
}
test()

从运行结果发现,没有执行deinit方法,即没有打印CJLTeacher deinit,所以这里有循环引用

循环引用解决方法

有两种方式可以解决swift中的循环引用

func test(){
    var t = CJLTeacher()
    t.completionBlock = { [weak t] in
        t?.age += 1
    } 
}
func test(){
    var t = CJLTeacher()
    t.completionBlock = { [unowned t] in
        t.age += 1
    } 
}

捕获列表

请问下面代码的clourse()调用后,输出的结果是什么?

func test(){
    var age = 0
    var height = 0.0
    //将变量age用来初始化捕获列表中的常量age,即将0给了闭包中的age(值拷贝)
    let clourse = {[age] in
        print(age)
        print(height)
    }
    age = 10
    height = 1.85
    clourse()
}

<!--打印结果-->
0
1.85

所以从结果中可以得出:对于捕获列表中的每个常量,闭包会利用周围范围内具有相同名称的常量/变量,来初始化捕获列表中定义的常量。有以下几点说明:

swift中Runtime探索

请问下面代码,会打印方法和属性吗?

class CJLTeacher {
    var age: Int = 18
    func teach(){
        print("teach")
    }
}

let t = CJLTeacher()

func test(){
    var methodCount: UInt32 = 0
    let methodList = class_copyMethodList(CJLTeacher.self, &methodCount)
    for i in 0..<numericCast(methodCount) {
        if let method = methodList?[i]{
            let methodName = method_getName(method)
            print("方法列表:\(methodName)")
        }else{
            print("not found method")
        }
    }
    
    var count: UInt32 = 0
    let proList = class_copyPropertyList(CJLTeacher.self, &count)
    for i in 0..<numericCast(count) {
        if let property = proList?[i]{
            let propertyName = property_getName(property)
            print("属性成员属性:\(property)")
        }else{
            print("没有找到你要的属性")
        }
    }
    print("test run")
}
test()

运行结果如下,发现并没有打印方法和属性

从运行结果看,是可以打印,但是由于类并没有暴露给OC,所以OC是无法使用的,这样做是没有意义的

从结果发现获取的只有init方法,主要是因为在 swift.h文件中暴露出来的只有init方法

结论

objc源码验证

(由于xcode12.2暂时无法运行objc源码,下列验证图片仅供参考)

从这里可以得出swift中有默认基类,即_SwiftObject

#if __has_attribute(objc_root_class)
__attribute__((__objc_root_class__))
#endif
SWIFT_RUNTIME_EXPORT @interface SwiftObject<NSObject> {
 @private
  Class isa;
  //refCounts
  SWIFT_HEAPOBJECT_NON_OBJC_MEMBERS;
}

所以swift为了保留和OC交互,其在底层存储的数据结构上和OC是一致的

struct swift_class_t : objc_class {
    uint32_t flags;
    uint32_t instanceAddressOffset;
    uint32_t instanceSize;
    uint16_t instanceAlignMask;
    uint16_t reserved;

    uint32_t classSize;
    uint32_t classAddressOffset;
    void *description;
    // ...

    void *baseAddress() {
        return (void *)((uint8_t *)this - classAddressOffset);
    }
};

问题:为什么继承NSObject?:必须通过NSObject声明,来帮助编译器判断,当前类是一个和OC交互的类

元类型、AnyClass、Self

AnyObject

class CJLTeacher: NSObject {
    var age: Int = 18
}

var t = CJLTeacher()

//此时代表的就是当前CJLTeacher的实例对象
var t1: AnyObject = t

//此时代表的是CJLTeacher这个类的类型
var t2: AnyObject = CJLTeacher.self

//继承自AnyObject,表示JSONMap协议只有类才可以遵守
protocol JSONMap: AnyObject { }

例如如果是结构体遵守协议,会报错

需要将struct修改成class

//继承自AnyObject,表示JSONMap协议只有类才可以遵守
protocol JSONMap: AnyObject {
    
}
class CJLJSONMap: JSONMap {
    
}

Any

//如果使用AnyObject会报错,而Any不会
var array: [Any] = [1, "cjl", "", true]

AnyClass

T.self & T.Type

//此时的self类型是  CJLTeacher.Type
var t = CJLTeacher.self

打印结果如下

var t = CJLTeacher()
//实例对象地址:实例对象.self 返回实例对象本身
var t1 = t.self
//存储metadata元类型
var t2 = CJLTeacher.self

type(of:)

<!--demo1-->
var age = 10 as NSNumber
print(type(of: age))

<!--打印结果-->
__NSCFNumber

<!--demo2-->
//value - static type 静态类型:编译时期确定好的
//type(of:) - dynamic type:Int
var age = 10
//value的静态类型就是Any
func test(_ value: Any){
    
    print(type(of: value))
}

test(age)

<!--打印结果-->
Int

实践

demo1

请问下面这段代码的打印结果是什么?

class CJLTeacher{
    var age = 18
    var double = 1.85
    func teach(){
        print("LGTeacher teach")
    }
}
class CJLPartTimeTeacher: CJLTeacher {
    override func teach() {
        print("CJLPartTimeTeacher teach")
    }
}

func test(_ value: CJLTeacher){
    let valueType = type(of: value)
    value.teach()
    print(value)
}
var t = CJLPartTimeTeacher()
test(t)

<!--打印结果-->
CJLPartTimeTeacher teach
CJLTest.CJLPartTimeTeacher

demo2

请问下面代码的打印结果是什么?

protocol TestProtocol {
    
}
class CJLTeacher: TestProtocol{
    var age = 18
    var double = 1.85
    func teach(){
        print("LGTeacher teach")
    }
}

func test(_ value: TestProtocol){
    let valueType = type(of: value)
    print(valueType)
}
var t = CJLTeacher()
let t1: TestProtocol = CJLTeacher()
test(t)
test(t1)

<!--打印结果-->
CJLTeacher
CJLTeacher
func test<T>(_ value: T){
    let valueType = type(of: value)
    print(valueType)
}

<!--打印结果-->
CJLTeacher
TestProtocol

从结果中发现,打印并不一致,原因是因为当有协议、泛型时,当前的编译器并不能推断出准确的类型,需要将value转换为Any,修改后的代码如下:

func test<T>(_ value: T){
    let valueType = type(of: value as Any)
    print(valueType)
}

<!--打印结果-->
CJLTeacher
CJLTeacher

demo3

在上面的案例中,如果class_getClassMethod中传t.self,可以获取方法列表吗?

func test(){
    var methodCount: UInt32 = 0
    let methodList = class_copyMethodList(t.self, &methodCount)
    for i in 0..<numericCast(methodCount) {
        if let method = methodList?[i]{
            let methodName = method_getName(method)
            print("方法列表:\(methodName)")
        }else{
            print("not found method")
        }
    }

    var count: UInt32 = 0
    let proList = class_copyPropertyList(CJLTeacher.self, &count)
    for i in 0..<numericCast(count) {
        if let property = proList?[i]{
            let propertyName = property_getName(property)
            print("属性成员属性:\(property)")
        }else{
            print("没有找到你要的属性")
        }
    }
    print("test run")
}
test()

从结果运行看,并不能,因为t.self实例对象本身,即CJLTeacher,并不是CJLTeacher.Type类型

总结

作为一个开发者,有一个学习的氛围跟一个交流圈子特别重要,这是一个我的iOS开发交流群:130 595 548,不管你是小白还是大牛都欢迎入驻 ,让我们一起进步,共同发展!(群内会免费提供一些群主收藏的免费学习书籍资料以及整理好的几百道面试题和答案文档!)

上一篇 下一篇

猜你喜欢

热点阅读