高等代数

高等代数题选2:多项式(2)

2019-05-07  本文已影响1人  溺于恐

1.证明:若d(x)|f(x),d(x)|g(x),且d(x)f(x)g(x)的一个组合,则d(x)f(x)g(x)的一个最大公因式

证:

\because d(x)|f(x),d(x)|g(x)

\therefore d(x)f(x)g(x)的一个公因式

h(x)f(x)g(x)的一个公因式

h(x)可整除f(x)g(x)的任一组合

\therefore h(x)|d(x)

\therefore d(x)f(x)g(x)的一个最大公因式


2.证明:(f(x)h(x),g(x)h(x))=(f(x),g(x))h(x)(h(x)首项系数为1)

证:

\because (f(x),g(x))|f(x),g(x)

\therefore (f(x),g(x))h(x)|f(x)h(x),g(x)h(x)

\therefore (f(x),g(x))h(x)f(x)h(x),g(x)h(x)的一个公因式

(f(x),g(x))=u(x)f(x)+v(x)g(x),则

(f(x),g(x))h(x)=u(x)f(x)h(x)+v(x)g(x)h(x)

\therefore (f(x),g(x))h(x)f(x)h(x),g(x)h(x)的一个最大公因式

\because h(x)首项系数为1​

\therefore (f(x),g(x))h(x)首项系数为1​

\therefore (f(x)h(x),g(x)h(x))=(f(x),g(x))h(x)


3.证明:若f(x),g(x)不全为零,则({f(x)\over (f(x),g(x))},{g(x)\over (f(x),g(x))})=1

证:

\exists u(x),v(x)使得​

u(x)f(x)=v(x)g(x)=(f(x),g(x))

\therefore u(x){f(x)\over (f(x),g(x))}+v(x){g(x)\over (f(x),g(x))}=1

\therefore ({f(x)\over (f(x),g(x))},{g(x)\over (f(x),g(x))})=1


4.证明:若f(x),g(x)不全为零,且u(x)f(x)=v(x)g(x)=(f(x),g(x)),则(u(x),v(x))=1

证:

\because u(x)f(x)=v(x)g(x)=(f(x),g(x))

\therefore {f(x)\over (f(x),g(x))}u(x)+{g(x)\over (f(x),g(x))}v(x)=1

\therefore (u(x),v(x))=1


5.证明:若(f(x),g(x))=1,(f(x),h(x))=1,则(f(x),g(x)h(x))=1

证:

\because (f(x),g(x))=1,(f(x),h(x))=1

\therefore \exists u_1(x),v_1(x)u_2(x),v_2(x)使得

u_1(x)f(x)=v_1(x)g(x)=1

u_2(x)f(x)=v_2(x)h(x)=1

两式相乘可得​

u_1(x)u_2(x)f(x)f(x)+u_1(x)v_2(x)f(x)h(x)

+u_2(x)v_1(x)f(x)g(x)+v_2(x)v_1(x)g(x)h(x)

=[u_1(x)u_2(x)f(x)+u_1(x)v_2(x)h(x)

+u_2(x)v_1(x)g(x)]f(x)+v_2(x)v_1(x)g(x)h(x)=1

\therefore (f(x),g(x)h(x))=1


6.设f_1(x),\cdots,f_m(x),g_1(x),\cdots,g_n(x)\in P[x],且(f_i(x),g_j(x))=1(i=1,2,\cdots,m;j=1,2,\cdots,n)

证明:(f_1(x)f_2(x)\cdots f_m(x),g_1(x)g_2(x)\cdots g_n(x))=1

证:

若不然

d(x)=(f_1(x)f_2(x)\cdots f_m(x),g_1(x)g_2(x)\cdots g_n(x))\neq 1

d(x)有一个不可约因式,设为p(x)

\therefore p(x)|f_1(x)f_2(x)\cdots f_m(x)

\therefore p(x)|f_s(x)(1\le s\le m)

同理可得

p(x)|g_t(x)(1\le t\le n)

\therefore p(x)|(f_s(x),g_t(x)),矛盾

\therefore (f_1(x)f_2(x)\cdots f_m(x),g_1(x)g_2(x)\cdots g_n(x))=1


7.证明:若(f(x),g(x))=1,则(f(x)g(x),f(x)+g(x))=1

证:

\because (f(x),g(x))=1

\therefore (f(x),f(x)+g(x))=1,(g(x),f(x)+g(x))=1

\therefore (f(x)g(x),f(x)+g(x))=1


8.求下列多项式的公共根:

f(x)=x^3+2x^2+2x+1,g(x)=x^4+x^3+2x^2+x+1

解:

\qquad\qquad\qquad\qquad f(x)\qquad\qquad\qquad\qquad g(x)

\begin{array}{c|l|l|c}q_2(x)={1\over 2}x+{1\over 2}&x^3+2x^2+2x+1&x^4+x^3+2x^2+x+1&q_1(x)=x-1\\ &x^3+x^2+x&x^4+x^3+2x^2+x+1& \\ \hline &x^2+x+1&-x^3+1\\ &x^2+x+1&-x^3-2x^2-2x-1& \\ \hline &r_2(x)=0&r_1(x)=2x^2+2x+2\\ \end{array}

\therefore (f(x),g(x))=x^2+x+1

\therefore f(x)g(x)的公共根为

-{1\over 2}+{\sqrt3\over 2}i及-{1\over 2}-{\sqrt3\over 2}i

上一篇 下一篇

猜你喜欢

热点阅读