iOS底层原理-多线程(GCD)
多线程面试题
你理解的多线程?
iOS的多线程方案有哪几种?你更倾向于哪一种?
你在项目中用过 GCD 吗?
GCD 的队列类型
说一下 OperationQueue 和 GCD 的区别,以及各自的优势
线程安全的处理手段有哪些?
OC你了解的锁有哪些?在你回答基础上进行二次提问;
追问一:自旋和互斥对比?
追问二:使用以上锁需要注意哪些?
追问三:用C/OC/C++,任选其一,实现自旋或互斥?口述即可!
GCD的常用函数
image.pngGCD中有2个用来执行任务的函数
用同步的方式执行任务
dispatch_sync(dispatch_queue_t queue, dispatch_block_t block);
queue:队列
block:任务
用异步的方式执行任务
dispatch_async(dispatch_queue_t queue, dispatch_block_t block);
GCD源码:https://github.com/apple/swift-corelibs-libdispatch
各种队列的执行效果
image.png使用sync函数往当前串行队列中添加任务,会卡住当前的串行队列(产生死锁)
GCD的队列
GCD的队列可以分为2大类型
并发队列(Concurrent Dispatch Queue)
可以让多个任务并发(同时)执行(自动开启多个线程同时执行任务)
并发功能只有在异步(dispatch_async)函数下才有效
串行队列(Serial Dispatch Queue)
让任务一个接着一个地执行(一个任务执行完毕后,再执行下一个任务)
容易混淆的术语
有4个术语比较容易混淆:同步、异步、并发、串行
同步和异步主要影响:能不能开启新的线程
同步:在当前线程中执行任务,不具备开启新线程的能力
异步:在新的线程中执行任务,具备开启新线程的能力
并发和串行主要影响:任务的执行方式
并发:多个任务并发(同时)执行
串行:一个任务执行完毕后,再执行下一个任务
//这是一个很经典的死锁的面试题
// 问题:以下代码是在主线程执行的,会不会产生死锁?会!是因为主线程除了任务2还有一个任务,如果不把任务3执行完就不会执行任务2
//使用sync函数往当前串行队列中添加任务,会卡住当前的串行队列(产生死锁)
- (void)interview0
{
NSLog(@"执行任务1");
dispatch_queue_t queue = dispatch_get_main_queue();
dispatch_sync(queue, ^{
NSLog(@"执行任务2");
});
NSLog(@"执行任务3");
// dispatch_sync立马在当前线程同步执行任务
}
多线程的安全隐患
资源共享
1块资源可能会被多个线程共享,也就是多个线程可能会访问同一块资源
比如多个线程访问同一个对象、同一个变量、同一个文件
当多个线程访问同一块资源时,很容易引发数据错乱和数据安全问题
解决方案:使用线程同步技术(同步,就是协同步调,按预定的先后次序进行)
常见的线程同步技术是:加锁
iOS中的线程同步方案
OSSpinLock
os_unfair_lock
pthread_mutex
dispatch_semaphore
dispatch_queue(DISPATCH_QUEUE_SERIAL)
NSLock
NSRecursiveLock
NSCondition
NSConditionLock
@synchronized
GNUstep
GNUstep是GNU计划的项目之一,它将Cocoa的OC库重新开源实现了一遍
源码地址:http://www.gnustep.org/resources/downloads.php
虽然GNUstep不是苹果官方源码,但还是具有一定的参考价值
atomic
atomic用于保证属性setter、getter的原子性操作,相当于在getter和setter内部加了线程同步的锁
可以参考源码objc4的objc-accessors.mm
它并不能保证使用属性的过程是线程安全的
@interface CCPerson : NSObject
@property (assign, nonatomic) int age;
@property (copy, atomic) NSString *name;
@property (strong, atomic) NSMutableArray *data;
@end
nonatomic和atomic
atom:原子,不可再分割的单位
atomic:原子性
给属性加上atomic修饰,可以保证属性的setter和getter都是原子性操作,也就是保证setter和gette内部是线程同步的
//根据runtime的源码我们可以发现如果是非原子属性set方法就直接赋值
//如果是原子属性,我们可以看到spinlock_t进行加锁解锁操作
void objc_setProperty(id self, SEL _cmd, ptrdiff_t offset, id newValue, BOOL atomic, signed char shouldCopy)
{
bool copy = (shouldCopy && shouldCopy != MUTABLE_COPY);
bool mutableCopy = (shouldCopy == MUTABLE_COPY);
reallySetProperty(self, _cmd, newValue, offset, atomic, copy, mutableCopy);
}
static inline void reallySetProperty(id self, SEL _cmd, id newValue, ptrdiff_t offset, bool atomic, bool copy, bool mutableCopy)
if (!atomic) {
oldValue = *slot;
*slot = newValue;
} else {
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();
oldValue = *slot;
*slot = newValue;
slotlock.unlock();
}
id objc_getProperty(id self, SEL _cmd, ptrdiff_t offset, BOOL atomic) {
if (offset == 0) {
return object_getClass(self);
}
// Retain release world
id *slot = (id*) ((char*)self + offset);
if (!atomic) return *slot;
// Atomic retain release world
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();
id value = objc_retain(*slot);
slotlock.unlock();
// for performance, we (safely) issue the autorelease OUTSIDE of the spinlock.
return objc_autoreleaseReturnValue(value);
}
iOS中的读写安全方案
思考如何实现以下场景
同一时间,只能有1个线程进行写的操作
同一时间,允许有多个线程进行读的操作
同一时间,不允许既有写的操作,又有读的操作
上面的场景就是典型的“多读单写”,经常用于文件等数据的读写操作,iOS中的实现方案有
pthread_rwlock:读写锁
dispatch_barrier_async:异步栅栏调用
pthread_rwlock
等待锁的线程会进入休眠
dispatch_barrier_async
这个函数传入的并发队列必须是自己通过dispatch_queue_cretate创建的
如果传入的是一个串行或是一个全局的并发队列,那这个函数便等同于dispatch_async函数的效果