MySQL索引简述--哈希索引

2017-07-25  本文已影响0人  Q南南南Q

哈希算法

哈希算法时间复杂度为O(1),且不只存在于索引中,每个数据库应用中都存在该数据结构。

哈希表

哈希表也为散列表,又直接寻址改进而来。在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h,根据关键字k计算出槽的位置。函数h将关键字域映射到哈希表T[0...m-1]的槽位上。


上图中哈希函数h有可能将两个不同的关键字映射到相同的位置,这叫做碰撞,在数据库中一般采用链接法来解决。在链接法中,将散列到同一槽位的元素放在一个链表中,如下图所示:

InnoDB存储引擎中的哈希算法

InnoDB中采用除法散列函数,冲突机制采用链接法。

BTree索引和哈希索引的区别

Hash索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以Hash索引的查询效率要远高于B-Tree索引。

可能很多人又有疑问了,既然Hash索引的效率要比B-Tree高很多,为什么大家不都用Hash索引而还要使用B-Tree索引呢?任何事物都是有两面性的,Hash索引也一样,虽然Hash索引效率高,但是Hash索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些:

上一篇下一篇

猜你喜欢

热点阅读