程序员

计算视频卡顿率

2021-08-01  本文已影响0人  啊哈_0042

技术栈:

FFmpe,appium,OBS,opencv

思路:

  1. 通过自动化录制的测试视频
  2. 利用FFmpe选择兴趣区域进行截取
  3. 拿到兴趣区域进行视频前10s,中间10s,后10s 视频
  4. 把三段10s的视频进行每50ms一张图片
  5. 通过opencv进行图片的分析
    主要依据人的视线规则是相同的图片持续200ms,就是认为是卡顿的。我根据这个规则,通过opencv比较步骤四的图片。第n个图片对比n+1的图片比较像素相似度。然后相似度在多少范围内持续了4张图片(50ms*4=200ms)就认为这段视频是卡段的

计算出卡顿率

上代码

通过自动化录制的测试视频这个就不写了,大致就是通过OBS启动虚拟摄像头
然后学生端显示老师的摄像头就是虚拟摄像头投射的测试视频

通过利用FFmpe选择兴趣区域进行截取

注:crop:ow[:oh[:x[:y:[:keep_aspect]]]]


crop的使用
ffmpe -i D:\Users\admin\Desktop\test\丰金莉分享的视频.mp4 -vf crop=327:184:641:200 D:\Users\admin\Desktop\test\test1.mp4

拿到兴趣区域进行视频前10s,中间10s,后10s 视频\

ffmpe -ss 00:00:00 -i D:\Users\admin\Desktop\test\test1.mp4 -vcodec copy -acodec copy -t 00:00:10 D:\Users\admin\Desktop\test\before10.mp4

把三段10s的视频进行每50ms一张图片

ffmpe -i D:\\Users\\admin\\Desktop\\test\\before10.mp4 -f image2 -vf fps=fps=20 D:\\Users\\admin\\Desktop\\test\\before\\%d.png

通过opencv进行图片的分析

package com.abcnull.tools;

import java.awt.HeadlessException;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.UnsupportedEncodingException;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;

import javax.imageio.ImageIO;

import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.utils.Converters;

public class ImageCompare {

    private boolean compareResult = false;
    private String mark = "_compareResult";
    /**
     * 比较两张图片,如不同则将不同处标记并输出到新的图片中
     * @param imagePath1 图片1的路径
     * @param imagePath2 图片2的路径
     */
    public Integer CompareAndMarkDiff(String imagePath1, String imagePath2)
    {
        Mat mat1 = readMat(imagePath1);
        Mat mat2 = readMat(imagePath2);
        mat1 = Imgcodecs.imdecode(mat1, Imgcodecs.IMREAD_UNCHANGED);
        mat2 = Imgcodecs.imdecode(mat2, Imgcodecs.IMREAD_UNCHANGED);
        /*Mat mat1 = Imgcodecs.imread(imagePath1, Imgcodecs.IMREAD_UNCHANGED);
        Mat mat2 = Imgcodecs.imread(imagePath2, Imgcodecs.IMREAD_UNCHANGED);*/
        if(mat1.cols() == 0 || mat2.cols() == 0 || mat1.rows() == 0 || mat2.rows() == 0)
        {
            System.out.println("图片文件路径异常,获取的图片大小为0,无法读取");
            return 0;
        }
        if(mat1.cols() != mat2.cols() || mat1.rows() != mat2.rows())
        {
            System.out.println("两张图片大小不同,无法比较");
            return 0;
        }
        mat1.convertTo(mat1, CvType.CV_8UC1);
        mat2.convertTo(mat2, CvType.CV_8UC1);
        Mat mat1_gray = new Mat();
        Imgproc.cvtColor(mat1, mat1_gray, Imgproc.COLOR_BGR2GRAY);
        Mat mat2_gray = new Mat();
        Imgproc.cvtColor(mat2, mat2_gray, Imgproc.COLOR_BGR2GRAY);
        mat1_gray.convertTo(mat1_gray, CvType.CV_32F);
        mat2_gray.convertTo(mat2_gray, CvType.CV_32F);
        double result = Imgproc.compareHist(mat1_gray, mat2_gray, Imgproc.CV_COMP_CORREL);
        if(result == 1)
        {
            System.out.println("两个图片完全相同");
            compareResult = true;//此处结果为1则为完全相同
            return 100;
        }
        int a= new Double(result*100).intValue();;
        System.out.println("相似度数值为:"+a+"%");
//        Mat mat_result = new Mat();
//        //计算两个灰度图的绝对差值,并输出到一个Mat对象中
//        Core.absdiff(mat1_gray, mat2_gray, mat_result);
//        //将灰度图按照阈值进行绝对值化
//        mat_result.convertTo(mat_result, CvType.CV_8UC1);
//        List<MatOfPoint> mat2_list = new ArrayList<MatOfPoint>();
//        Mat mat2_hi = new Mat();
//        //寻找轮廓图
//        Imgproc.findContours(mat_result, mat2_list, mat2_hi, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
//        Mat mat_result1 = mat1;
//        Mat mat_result2 = mat2;
        //使用红色标记不同点
        //System.out.println(mat2_list.size());
//        for (MatOfPoint matOfPoint : mat2_list)
//        {
//            Rect rect = Imgproc.boundingRect(matOfPoint);
//            Imgproc.rectangle(mat_result1, rect.tl(), rect.br(), new Scalar(0, 0, 255),2);
//            Imgproc.rectangle(mat_result2, rect.tl(), rect.br(), new Scalar(0, 0, 255),2);
//        }
//        String fileName1 = getFileName(imagePath1);
//        String targetPath1 = getParentDir(imagePath2)+File.separator+fileName1.replace(".", mark+".");
//        String fileName2 = getFileName(imagePath2);
//        String targetPath2 = getParentDir(imagePath2)+File.separator+fileName2.replace(".", mark+".");
//        System.out.println(targetPath1);
//        System.out.println(targetPath2);
        //图片一的带标记的输出文件;
//        Imgcodecs.imwrite(targetPath1, mat_result1);
        //图片二的带标记的输出文件;
//        Imgcodecs.imwrite(targetPath2, mat_result2);
        //writeImage(mat_result1, targetPath1);
        //writeImage(mat_result2, targetPath2);
        return a;
    }

    private void writeImage(Mat mat, String outPutFile)
    {
        MatOfByte matOfByte = new MatOfByte();
        Imgcodecs.imencode(".png", mat, matOfByte);
        byte[] byteArray = matOfByte.toArray();
        BufferedImage bufImage = null;
        try {
            InputStream in = new ByteArrayInputStream(byteArray);
            bufImage = ImageIO.read(in);
            ImageIO.write(bufImage, "png", new File(outPutFile));
        } catch (IOException | HeadlessException e)
        {
            e.printStackTrace();
        }
    }

    private String getFileName(String filePath)
    {
        File f = new File(filePath);
        return f.getName();
    }

    private String getParentDir(String filePath)
    {
        File f = new File(filePath);
        return f.getParent();
    }

    private Mat readMat(String filePath)
    {
        try {
            File file = new File(filePath);
            FileInputStream inputStream = new FileInputStream(filePath);
            byte[] byt = new byte[(int) file.length()];
            int read = inputStream.read(byt);
            List<Byte> bs = convert(byt);
            Mat mat1 = Converters.vector_char_to_Mat(bs);
            return mat1;
        } catch (UnsupportedEncodingException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        }
        return new Mat();
    }

    private List<Byte> convert(byte[] byt)
    {
        List<Byte> bs = new ArrayList<Byte>();
        for (int i = 0; i < byt.length; i++)
        {
            bs.add(i, byt[i]);
        }
        return bs;
    }

    public static void main(String[] args) {
        List<Integer> list=new ArrayList<>();
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        ImageCompare imageCompare=new ImageCompare();
        for (int i = 1; i < 200; i++) {
            System.out.println("out"+i+".png"+"比"+"out"+(i+1)+".png"+"结果:");
            int similarity = imageCompare.CompareAndMarkDiff("D:\\Users\\admin\\Desktop\\test\\before\\" + i + ".png", "D:\\Users\\admin\\Desktop\\test\\before\\" + (i + 1) + ".png");
            System.out.println(similarity);
            list.add(similarity);
        }
        list.add(0);
        System.out.println(list.toString());
        int sum=1;
        List<Integer> num100=new ArrayList<>();
        for(Integer num :list){
            if(98>num){
                if(sum>4){
                    num100.add(sum);
                    System.out.println("sum="+sum);
                }
                sum =1;
            }else {
                sum+=1;
            }
        }
        int sum1=0;
        for (int i = 0; i < num100.size(); i++) {
            sum1=num100.get(i)+sum1;
        }

        System.out.println(sum1);
        System.out.println(sum1*50);
        System.out.println(num100.size()*200);
        int aa=sum1*50;
        int bb=num100.size()*200;
        int cc=aa-bb;
        int dd=aa/100;
        System.out.println("卡顿率为:"+dd+"%");
    }
}


上一篇下一篇

猜你喜欢

热点阅读