PySpark存储Hive数据的两种方式
2017-07-21 本文已影响0人
小甜瓜Melon
背景:Hive的CREATE TABLE AS 和PySpark的.write.saveAsTable存储之后产生的数据类型并不一样,前者存储的方式是Text形式的,后者的存储形式是parquet形式。
示例
原始数据的类型
hiveContext.sql("SHOW CREATE TABLE testdb.tttest").show(n=1000, truncate=False)
+--------------------------------------------------------------+
|result |
+--------------------------------------------------------------+
|CREATE TABLE `testdb.tttest`( |
| `username` string, |
| `sex` string) |
|COMMENT 'Imported by sqoop on 2017/04/17 10:11:26' |
|ROW FORMAT SERDE |
| 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' |
|WITH SERDEPROPERTIES ( |
| 'field.delim'='\t', |
| 'line.delim'='\n', |
| 'serialization.format'='\t') |
|STORED AS INPUTFORMAT |
| 'org.apache.hadoop.mapred.TextInputFormat' |
|OUTPUTFORMAT |
| 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'|
|LOCATION |
| 'hdfs://nameservice1/user/hive/warehouse/testdb.db/tttest' |
|TBLPROPERTIES ( |
| 'COLUMN_STATS_ACCURATE'='true', |
| 'numFiles'='1', |
| 'numRows'='0', |
| 'rawDataSize'='0', |
| 'totalSize'='66', |
| 'transient_lastDdlTime'='1492395090') |
+--------------------------------------------------------------+
源数据为Text形式
方式一:利用Hive的CREATE TABLE AS存储
hiveContext.sql("DROP TABLE IF EXISTS testdb.test_a")
hiveContext.sql("""CREATE TABLE IF NOT EXISTS testdb.test_a AS SELECT * FROM testdb.tttest""")
hiveContext.sql("SHOW CREATE TABLE testdb.test_a").show(n=1000, truncate=False)
+------------------------------------------------------------+
|result |
+------------------------------------------------------------+
|CREATE TABLE `testdb.test_a`( |
| `username` string, |
| `sex` string) |
|ROW FORMAT SERDE |
| 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' |
|STORED AS INPUTFORMAT |
| 'org.apache.hadoop.mapred.TextInputFormat' |
|OUTPUTFORMAT |
| 'org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat' |
|LOCATION |
| 'hdfs://nameservice1/user/hive/warehouse/testdb.db/test_a'|
|TBLPROPERTIES ( |
| 'COLUMN_STATS_ACCURATE'='false', |
| 'numFiles'='2', |
| 'numRows'='-1', |
| 'rawDataSize'='-1', |
| 'totalSize'='66', |
| 'transient_lastDdlTime'='1500603886') |
+------------------------------------------------------------+
方式二:利用PySpark的.write.saveAsTable存储
hiveContext.sql("DROP TABLE IF EXISTS testdb.test_b")
hiveContext.sql("""SELECT * FROM testdb.tttest""").write.saveAsTable("testdb.test_b")
hiveContext.sql("SHOW CREATE TABLE testdb.test_b").show(n=1000, truncate=False)
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|result |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|CREATE TABLE `testdb.test_b`( |
| `username` string COMMENT '', |
| `sex` string COMMENT '') |
|ROW FORMAT SERDE |
| 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe' |
|WITH SERDEPROPERTIES ( |
| 'path'='hdfs://nameservice1/user/hive/warehouse/testdb.db/test_b') |
|STORED AS INPUTFORMAT |
| 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat' |
|OUTPUTFORMAT |
| 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat' |
|LOCATION |
| 'hdfs://nameservice1/user/hive/warehouse/testdb.db/test_b' |
|TBLPROPERTIES ( |
| 'COLUMN_STATS_ACCURATE'='false', |
| 'EXTERNAL'='FALSE', |
| 'numFiles'='2', |
| 'numRows'='-1', |
| 'rawDataSize'='-1', |
| 'spark.sql.sources.provider'='org.apache.spark.sql.parquet', |
| 'spark.sql.sources.schema.numParts'='1', |
| 'spark.sql.sources.schema.part.0'='{\"type\":\"struct\",\"fields\":[{\"name\":\"username\",\"type\":\"string\",\"nullable\":true,\"metadata\":{}},{\"name\":\"sex\",\"type\":\"string\",\"nullable\":true,\"metadata\":{}}]}', |
| 'totalSize'='1308', |
| 'transient_lastDdlTime'='1500603889') |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Tips
第一种方式有时会产生乱码,对于大型的表最好采用第二种方式进行存储,不容易产生乱码。
删除新建的两个表
hiveContext.sql("DROP TABLE testdb.test_a PURGE")
hiveContext.sql("DROP TABLE testdb.test_b PURGE")
完。