生物信息学与算法单细胞测序专题集合单细胞转录组

使用inferCNV分析单细胞转录组中拷贝数变异

2019-11-22  本文已影响0人  xuzhougeng

inferCNV用与探索肿瘤单细胞RNA-seq数据,分析其中的体细胞大规模染色体拷贝数变化(copy number alterations, CNA), 例如整条染色体或大片段染色体的增加或丢失(gain or deletions)。工作原理是,以一组"正常"细胞作为参考,分析肿瘤基因组上各个位置的基因表达量强度变化. 通过热图的形式展示每条染色体上的基因相对表达量,相对于正常细胞,肿瘤基因组总会过表达或者低表达。

inferCNV提供了一些过滤参数,通过调整参数来降低噪音,更好的揭示支持CNA的信号。此外inferCNV还包括预测CNA区间的方法以及根据异质性模式定义细胞类群的方法。

软件安装

尽管inferCNV是一个R包,但是在安装inferCNV之前还需要先下载安装JAGS ,好在它有Windows,MacOS和Linux版本,所以inferCNV在各个平台都能用。

Windows和MacOS的JAGS容易安装,而Linux的JAGS需要编译

# 手动安装BLAS和LAPACK不推荐
# yum install blas-devel lapack-devel
tar xf JAGS-4.3.0.tar.gz 
cd JAGS-4.3.0
./configure --libdir=/usr/local/lib64
make -j 20 && make install 

安装R包

install.packages("rjags")
if (!requireNamespace("BiocManager", quietly = TRUE))
     install.packages("BiocManager")
BiocManager::install("infercnv")

测试安装

library(infercnv)

infercnv_obj = CreateInfercnvObject(raw_counts_matrix=system.file("extdata", "oligodendroglioma_expression_downsampled.counts.matrix.gz", package = "infercnv"),
                                    annotations_file=system.file("extdata", "oligodendroglioma_annotations_downsampled.txt", package = "infercnv"),
                                    delim="\t",
                                    gene_order_file=system.file("extdata", "gencode_downsampled.EXAMPLE_ONLY_DONT_REUSE.txt", package = "infercnv"),
                                    ref_group_names=c("Microglia/Macrophage","Oligodendrocytes (non-malignant)")) 

infercnv_obj = infercnv::run(infercnv_obj,
                             cutoff=1, # cutoff=1 works well for Smart-seq2, and cutoff=0.1 works well for 10x Genomics
                             out_dir=tempfile(), 
                             cluster_by_groups=TRUE, 
                             denoise=TRUE,
                             HMM=TRUE)

如果没有报错,就说明安装成功。

软件使用

准备输入文件

需要准备3个输入数据

  1. 单细胞RNA-seq表达量的原始矩阵
  2. 注释文件,记录肿瘤和正常细胞
  3. 基因或染色体位置文件

第一个是Genes x Cells的表达矩阵(matrix),行名是基因,列名是细胞编号。

MGH54_P16_F12 MGH54_P12_C10 MGH54_P11_C11 MGH54_P15_D06 MGH54_P16_A03 ...
A2M 0 0 0 0 0 ...
A4GALT 0 0 0 0 0 ...
AAAS 0 37 30 21 0 ...
AACS 0 0 0 0 2 ...
AADAT 0 0 0 0 0 ...
... ... ... ... ... ... ...

第二个是样本注释信息文件,命名为"cellAnnotations.txt"。一共两列,第一列是对应第一个文件的列名,第二列是细胞的分组

MGH54_P2_C12    Microglia/Macrophage
MGH36_P6_F03    Microglia/Macrophage
MGH54_P16_F12   Oligodendrocytes (non-malignant)
MGH54_P12_C10   Oligodendrocytes (non-malignant)
MGH36_P1_B02    malignant_MGH36
MGH36_P1_H10    malignant_MGH36

第三个是基因位置信息文件,命名为"geneOrderingFile.txt"。一共四列,第一列对应第一个文件的行名,其余三列则是基因的位置。:基因名不能有重复

WASH7P  chr1    14363   29806
LINC00115       chr1    761586  762902
NOC2L   chr1    879584  894689
MIR200A chr1    1103243 1103332
SDF4    chr1    1152288 1167411
UBE2J2  chr1    1189289 1209265

两步法

最复杂的工作就是准备输入文件,而一旦上述三个文件已经创建完成,那么分析只要两步以及根据结果对参数进行调整。

第一步,根据上述的三个文件创建inferCNV对象

infercnv_obj = CreateInfercnvObject(raw_counts_matrix=matrix, # 可以直接提供矩阵对象
                                    annotations_file="cellAnnotations.txt",
                                    delim="\t",
                                    gene_order_file="gene_ordering_file.txt",
                                    ref_group_names=c("normal"))

这一步的一个关键参数是ref_group_name, 用于设置参考组。假如你并不知道哪个组是正常,哪个组不正常,那么设置为ref_group_name=NULL, 那么inferCNV会以全局平均值作为基线,这适用于有足够细胞存在差异的情况。此外,这里的raw_count_matrix是排除了低质量细胞的count矩阵。

第二步,运行标准的inferCNV流程。

# perform infercnv operations to reveal cnv signal
infercnv_obj = infercnv::run(infercnv_obj,
                             cutoff=1,  # use 1 for smart-seq, 0.1 for 10x-genomics
                             out_dir="output_dir",  # 输出文件夹
                             cluster_by_groups=T,   # 聚类
                             denoise=T, #去噪
                             HMM=T) # 是否基于HMM预测CNV

关键参数是cutoff, 用于选择哪些基因会被用于分析(在所有细胞的平均表达量需要大于某个阈值)。这个需要根据具体的测序深度来算,官方教程建议10X设置为0.1,smart-seq设置为1。你可以先评估下不同阈值下的保留基因数,决定具体值。cluster_by_groups用于声明是否根据细胞注释文件的分组对肿瘤细胞进行分群。

最终会输出很多文件在out_dir的目录下,而实际有用的是下面几个

参数说明

Infercnv::run的参数非常之多,总体上分为如下几类

你可以按照具体的需求修改不同步骤的参数,例如聚类默认cluster_by_groups=FALSE会根据k_obs_groups聚类成指定的组数,而层次聚类方法用于计算组间相似度的参数则是hclust_method.

此外,设置HMM=TRUE 的计算时间会长于HMM=FALSE,因此可以先设置HMM=FALSE快速查看结果。

在运行过程中它会显示每个步骤的信息,官方文档给出了示意图帮助理解。

InferCNV_procedure

提取信息

inferCNV会输出一个" map_metadata_from_infercnv .txt"文件用于记录每个细胞的元信息,所有信息都可以从该文件中进行提取。或者使用infercnv::add_to_seurat将信息直接增加到原来的seurat对象中。

参考资料

关于inferCNV的算法原理在如下几篇文章中有说明


版权声明:本博客所有文章除特别声明外,均采用 知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND 4.0) 进行许可。

扫码即刻交流
上一篇下一篇

猜你喜欢

热点阅读