07彩色直方图均衡化

2019-07-18  本文已影响0人  犬夜叉写作业
# 本质:统计每个像素灰度 出现的概率 0-255 p
# 累计概率 
# 1 0.2  0.2
# 2 0.3  0.5
# 3 0.1  0.6
# 256 
# 100 0.5 255*0.5 = new 
# 1 统计每个颜色出现的概率 2 累计概率 1 3 0-255 255*p
# 4 pixel 
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image0.jpg',1)
cv2.imshow('src',img)

imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]

count_b = np.zeros(256,np.float)
count_g = np.zeros(256,np.float)
count_r = np.zeros(256,np.float)

for i in range(0,height):
    for j in range(0,width):
        (b,g,r) = img[i,j]
        index_b = int(b)
        index_g = int(g)
        index_r = int(r)
        count_b[index_b] = count_b[index_b]+1
        count_g[index_g] = count_g[index_g]+1
        count_r[index_r] = count_r[index_r]+1

for i in range(0,255):
    count_b[i] = count_b[i]/(height*width)
    count_g[i] = count_g[i]/(height*width)
    count_r[i] = count_r[i]/(height*width)

#计算累计概率
sum_b = float(0)
sum_g = float(0)
sum_r = float(0)

for i in range(0,256):
    sum_b = sum_b+count_b[i]
    sum_g = sum_g+count_g[i]
    sum_r = sum_r+count_r[i]
    count_b[i] = sum_b
    count_g[i] = sum_g
    count_r[i] = sum_r
#print(count)

# 计算映射表
map_b = np.zeros(256,np.uint16)
map_g = np.zeros(256,np.uint16)
map_r = np.zeros(256,np.uint16)
for i in range(0,256):
    map_b[i] = np.uint16(count_b[i]*255)
    map_g[i] = np.uint16(count_g[i]*255)
    map_r[i] = np.uint16(count_r[i]*255)

# 映射
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
    for j in range(0,width):
        (b,g,r) = img[i,j]
        b = map_b[b]
        g = map_g[g]
        r = map_r[r]
        dst[i,j] = (b,g,r)

cv2.imshow('dst',dst)
cv2.waitKey(0)
上一篇 下一篇

猜你喜欢

热点阅读