JavaJava 程序员

卷起来了!手把手带你写一个中高级程序员必会的分布式RPC框架

2022-02-25  本文已影响0人  程序花生

一、概述

什么是RPC?

那为什么要有 RPC,HTTP 不好么?

项目总体结构

整体架构

接下来,分别解释上述的过程

二、自定义注解

服务的提供者和消费者公用一个接口,@ServiceExpose是为了暴露服务,放在生产者的某个实现类上;@ServiceReference是为了引用服务,放在消费者的需要注入的属性上。

三、启动配置

主要是加载一些rpc相关的配置类,使用SpringBoot自动装配。可以使用SPI机制加入一些自定义的类,放到指定文件夹中。

四、rpc接口注入/rpc服务扫描

这里主要就是通过反射获得对应注解的属性/类,进行服务暴露/服务引用。 这里需要关注的是什么时候进行服务暴露/引用?如下:

那么怎么知道Spring IOC刷新完成,这里就使用一个Spring提供的监听器,当Spring IOC刷新完成,就会触发监听器。

五、服务注册到ZK/从Zk获得服务

Zookeeper采用节点树的数据模型,类似linux文件系统,/,/node1,/node2 比较简单。不懂Zookeeper请移步:Zookeeper原理

我们采用的是对每个服务名创建一个持久节点,服务注册时实际上就是在zookeeper中该持久节点下创建了一个临时节点,该临时节点存储了服务的IP、端口、序列化方式等。

客户端获取服务时通过获取持久节点下的临时节点列表,解析服务地址数据:

客户端监听服务变化:

六、生成代理类对象

这里使用JDK的动态代理,也可以使用cglib或者Javassist(dobbo使用)。

public class ClientProxyFactory {
    /**
     * 获取代理对象,绑定 invoke 行为
     *
     * @param clazz 接口 class 对象
     * @param <T>   类型
     * @return 代理对象
     */public <T> T getProxyInstance(Class<T> clazz) {
        return (T) Proxy.newProxyInstance(clazz.getClassLoader(), new Class[]{clazz}, new InvocationHandler() {
            final Random random = new Random();

            @Override
            public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
                // 第一步:通过服务发现机制选择一个服务提供者暴露的服务
                String serviceName = clazz.getName();
                final List<ServiceInfo> serviceInfos = serviceDiscovery.listServices(serviceName);
                logger.info("Rpc server instance list: {}", serviceInfos);
                if (CollectionUtils.isEmpty(serviceInfos)) {
                    throw new RpcException("No rpc servers found.");
                }

                // TODO: 这里模拟负载均衡,从多个服务提供者暴露的服务中随机挑选一个,后期写方法实现负载均衡
                final ServiceInfo serviceInfo = serviceInfos.get(random.nextInt(serviceInfos.size()));

                // 第二步:构造 rpc 请求对象
                final RpcRequest rpcRequest = new RpcRequest();
                rpcRequest.setServiceName(serviceName);
                rpcRequest.setMethod(method.getName());
                rpcRequest.setParameterTypes(method.getParameterTypes());
                rpcRequest.setParameters(args);

                // 第三步:编码请求消息, TODO: 这里可以配置多种编码方式
                byte[] data = messageProtocol.marshallingReqMessage(rpcRequest);

                // 第四步:调用 rpc client 开始发送消息
                byte[] byteResponse = rpcClient.sendMessage(data, serviceInfo);

                // 第五步:解码响应消息
                final RpcResponse rpcResponse = messageProtocol.unmarshallingRespMessage(byteResponse);

                // 第六步:解析返回结果进行处理
                if (rpcResponse.getException() != null) {
                    throw rpcResponse.getException();
                }
                return rpcResponse.getRetValue();
            }
        });
    }
}

七、负载均衡

本实现支持两种主要负载均衡策略,随机和轮询,其中他们都支持带权重的随机和轮询,其实也就是四种策略。

八、Netty通信

服务端和客户端基本一样,这里只展示服务端的代码。代理对象在Spring启动的时候就生成了,但是没有调用,每一个调用(请求)都会生成一个Netty的连接。

public class NettyRpcServer extends RpcServer {

    @Override
    public void start() {
        // 创建两个线程组
        EventLoopGroup bossGroup = new NioEventLoopGroup();
        EventLoopGroup workerGroup = new NioEventLoopGroup();
        try {
            // 创建服务端的启动对象
            ServerBootstrap serverBootstrap = new ServerBootstrap()
                    // 设置两个线程组
                    .group(bossGroup, workerGroup)
                    // 设置服务端通道实现类型
                    .channel(NioServerSocketChannel.class)
                    // 服务端用于接收进来的连接,也就是boosGroup线程, 线程队列大小
                    .option(ChannelOption.SO_BACKLOG, 100)
                    .childOption(ChannelOption.SO_KEEPALIVE, true)
                    // child 通道,worker 线程处理器
                    .childHandler(new ChannelInitializer<SocketChannel>() {
                        // 给 pipeline 管道设置自定义的处理器
                        @Override
                        public void initChannel(SocketChannel channel) {
                            ChannelPipeline pipeline = channel.pipeline();
                            pipeline.addLast(new NettyServerHandler());
                        }
                    });

            // 绑定端口号,同步启动服务
            ChannelFuture channelFuture = serverBootstrap.bind(port).sync();
            channel = channelFuture.channel();
            // 对关闭通道进行监听,变为同步
            channelFuture.channel().closeFuture().sync();
        } catch (Exception e) {
            logger.error("server error.", e);
        } finally {
            // 释放线程组资源
            bossGroup.shutdownGracefully();
            workerGroup.shutdownGracefully();
        }
    }

实现具体handler

public class NettyServerHandler extends ChannelInboundHandlerAdapter {
    //当通道就绪就会触发该方法
    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        //进行记录
        logger.info("channel active: {}", ctx);
    }

    //读取数据实际(这里我们可以读取客户端发送的消息)
    @Override
    public void channelRead(ChannelHandlerContext ctx, MyDataInfo.MyMessage msg) throws Exception {
        //将数据读到buffer中
        final ByteBuf msgBuf = (ByteBuf) msg;
        final byte[] reqBytes = new byte[msgBuf.readableBytes()];
        msgBuf.readBytes(reqBytes);
    }

    //数据读取完毕
    @Override
    public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
        //使用反射获找到目标方法进行返回
        final byte[] respBytes = requestHandler.handleRequest(reqBytes);
        ctx.writeAndFlush(respBytes);
    }

    //处理异常, 一般是需要关闭通道
    @Override
    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
        ctx.close();
    }
}

九、序列化协议

对计算机网络稍微有一点了解的同学都知道,数据在网络中传输是二进制的:01010101010101010,类似这种,只有二进制数据才能在网络中传输。但是在编码之前我们一般先进行序列化,目的是为了优化传输的数据量。因为有的数据太大,需要进行空间优化。

那么我们来区分一下序列化和编码:我画一张图大家都全明白了

定义一个序列化协议,放入作为一个handler放入pipeline中。

Netty支持多种序列化,比如jdk,Json,ProtoBuf 等,这里使用ProtoBuf,其序列化后码流小性能高,非常适合RPC调用。接下来看怎么使用ProtoBuf?

引入Protobuf的依赖

<dependency>
    <groupId>com.google.protobuf</groupId>
    <artifactId>protobuf-java</artifactId>
    <version>2.4.1</version>
</dependency>

序列化:

/**
 * 调用对象构造好的Builder,完成属性赋值和序列化操作
 * @return
 */
public static byte[] protobufSerializer(){
    AnimalProto.Animal.Builder builder = AnimalProto.Animal.newBuilder();
    builder.setId(1L);
    builder.setName("小猪");
    List<String> actions = new ArrayList<>();
    actions.add("eat");
    actions.add("run");
    builder.addAllActions(actions);
    return builder.build().toByteArray();
}

反序列化:

/**
 * 通过调用parseFrom则完成反序列化
 * @param bytes
 * @return
 * @throws InvalidProtocolBufferException
 */
public static Animal deserialize(byte[] bytes) throws Exception {
    AnimalProto.Animal pAnimal = AnimalProto.Animal.parseFrom(bytes);
    Animal animal = new Animal();
    animal.setId(pAnimal.getId());
    animal.setName(pAnimal.getName());
    animal.setActions(pAnimal.getActionsList());
    return animal;
}

测试:

public static void main(String[] args) throws Exception {
    byte[] bytes = serializer();
    Animal animal = deserialize(bytes);
    System.out.println(animal);
}

以下看到是能正常序列化和反序列化的:

十、通信协议

通信协议主要是解决网络传输问题,比如TCP拆包粘包问题。

TCP问题:

解决方案:业界的主流协议的解决方案可以归纳如下

这里只是列举出来编码过程,解码是逆过程。(说白了,编码就是找着固定的格式进行写入,解码就是照着固定的格式读)

恭喜你,已经学会写RPC框架了,想深入了解的朋友可以参照源码。进行学习,升级。

原文链接:https://www.cnblogs.com/monkey-xuan/p/15893604.html
作者:Monkey-X

上一篇 下一篇

猜你喜欢

热点阅读