FinanceR 数据-R语言-图表-决策-Linux-Python

[译]快速上手:在R中使用XGBoost算法

2016-03-10  本文已影响2172人  FinanceR

介绍

你知道 XGBoost 算法是一种现在在数据科学竞赛的获胜方案很流行的算法吗?

那么,他比传统的随机森林和神经网络算法强在哪里呢?广义上来说,它在效率,准确性,可行性都更有优势(接下来我们将会详细讨论)。

在最近的几年中,模型预测已经变得越来越快速和准确了。我记得我曾花费数个小时在为某个模型构建特征工程上,模型却仅仅提升了几个百分点。
现在,这些大量困难的问题都被更好的算法所解决。

从技术上说,XGBoost 是 Extreme Gradient Boosting 的缩写。它的流行源于在著名的Kaggle数据科学竞赛上被称为"奥托分类"的挑战。

2015年8月,Xgboost的R包发布,我们将在本文引用0.4-2版本的xgboost包。

在这篇文章中,我讲解释一个简单的方式来使用xgboost在R中。 因此,下次当你建立一个模型时可以考虑一下这个算法。我确信这是一个令人惊艳和幸福的时刻。

什么是 XGBoost?

xgboost 是"极端梯度上升"(Extreme Gradient Boosting)的简称, 它类似于梯度上升框架,但是更加高效。它兼具线性模型求解器和树学习算法。因此,它快速的秘诀在于算法在单机上也可以并行计算的能力。

这使得xgboost至少比现有的梯度上升实现有至少10倍的提升。它提供多种目标函数,包括回归,分类和排序。

由于它在预测性能上的强大但是相对缓慢的实现,"xgboost" 成为很多比赛的理想选择。
它还有做交叉验证和发现关键变量的额外功能。在优化模型时,这个算法还有非常多的参数需要调整。我们将在下一个章节讨论这些因素。

使用XGBoost数据的准备

XGBoost仅适用于数值型向量。是的!你需要使用中区分数据类型。

因此,您需要将所有其他形式的数据转换为数值型向量。一个简单的方法将类别变量转换成数值向量是一个"独热编码"。这个词源于数字电路语言,这意味着一个数组的二进制信号,只有合法的值是0和1。

在R中,一个独热编码非常简单。这一步(如下所示)会在每一个可能值的变量使用标志建立一个稀疏矩阵。稀疏矩阵是一个矩阵的零的值。稀疏矩阵是一个大多数值为零的矩阵。相反,一个稠密矩阵是大多数值非零的矩阵。

假设,你有一个叫“竞选”的数据集,除了反应变量,想将所有分类变量转换成一些标志。如下所示:

sparse_matrix <- sparse.model.matrix(response ~ .-1, data = campaign)

现在让我们分解这个代码如下:

想要转化目标变量,你可以使用下面的代码:

output_vector = df[,response] == "Responder"

代码解释:

在R中运用Xgboost建立模型

可以使用xgboost破解任何数据问题,下面是简单的步骤:

第一步:加载的所有库

library(xgboost)
library(readr)
library(stringr)
library(caret)
library(car)

第二步:加载数据集

(这里我用一个银行的数据,我们需要找到一个客户是否有资格获得贷款)。

set.seed(100)
setwd("C:\\Users\\ts93856\\Desktop\\datasource")
# 加载数据
df_train = read_csv("train_users_2.csv")
df_test = read_csv("test_users.csv")
# 加载标签的训练数据
labels = df_train['labels']
df_train = df_train[-grep('labels', colnames(df_train))]
# combine train and test data
df_all = rbind(df_train,df_test)

第三步:数据清洗和特征工程

# 清洗变量 :  这里我筛选出年龄不到14岁或超过100的人
df_all[df_all$age < 14 | df_all$age > 100,'age'] <- -1
df_all$age[df_all$age < 0] <- mean(df_all$age[df_all$age > 0])
# 独热编码分类特征
ohe_feats = c('gender', 'education', 'employer')
dummies <- dummyVars(~ gender +  education + employer, data = df_all)
df_all_ohe <- as.data.frame(predict(dummies, newdata = df_all))
df_all_combined <- cbind(df_all[,-c(which(colnames(df_all) %in% ohe_feats))],df_all_ohe)df_all_combined$agena <- as.factor(ifelse(df_all_combined$age < 0,1,0))

我在 “feature_selected” 中为模型提供一组变量可供使用。本文后面会分享我在选择变量中一个快速又巧妙的方法。

df_all_combined <- df_all_combined[,c('id',features_selected)] 
# split train and test
X = df_all_combined[df_all_combined$id %in% df_train$id,]
y <- recode(labels$labels,"'True'=1; 'False'=0)
X_test = df_all_combined[df_all_combined$id %in% df_test$id,]

第四步:调整和运行模式

xgb <- xgboost(data = data.matrix(X[,-1]), 
 label = y, 
 eta = 0.1,
 max_depth = 15, 
 nround=25, 
 subsample = 0.5,
 colsample_bytree = 0.5,
 seed = 1,
 eval_metric = "merror",
 objective = "multi:softprob",
 num_class = 12,
 nthread = 3
)

第五步:测试分数

您现在有了一个对象“xgb”,这是一个xgboost模型。下面是是如何评分测试数量:

# 在测试集预测的值
y_pred <- predict(xgb, data.matrix(X_test[,-1]))

在 Xgboost 中使用参数

我明白,现在,你会非常好奇地想知道用于xgboost模型的各种参数。它有三种类型的参数:通用参数、辅助参数和任务参数。

让我们详细了解这些参数。我需要你注意,这是实现xgboost算法最关键的部分:

一般参数

辅助参数

具体参数树状图:

线性上升具体参数

任务参数

xgboost的高级函数性

与其他机器学习技术相比,我发现xgboost很简单的实现。如果你做了所有我们所做的,直到现在,你已经有了一个模型。

让我们进一步尝试找出模型中重要的变量并且缩小我们变量列表。

#让我们开始寻找实际的树是什么样子吧
model <- xgb.dump(xgb, with.stats = T)
model[1:10] #This statement prints top 10 nodes of the model
# 获得特征的真实名称
names <- dimnames(data.matrix(X[,-1]))[[2]]
# 计算特征重要性矩阵
importance_matrix <- xgb.importance(names, model = xgb)
# 制图
xgb.plot.importance(importance_matrix[1:10,])
# 在最后一步如果失效可能是因为版本问题,你可以尝试:
barplot(importance_matrix[,1])
img

可以观察到,许多变量是不值得使用到我们的模型中。您可以方便地删除这些变量并再次运行模型。这一次你可以期待一个更好的精度。

测试结果是否有意义

假设年龄为从上面的分析是最重要的变量,这是一个简单的卡方检验,来检验它是否是真正重要的变量。

test <- chisq.test(train$Age, output_vector)
print(test)

我们可以对所有重要变量做相同的处理。这将显示出模型是否准确地识别所有可能的重要变量。

尾注

通过本文,您可以构建一个简单的xgboost模型。对比其他类似的模型这个算法的速度将会令你感到惊奇。本文已经讨论了在R中使用xgboost算法各个方面的情况, 最重要的是你必须将你的数据类型转换成数值型,否则该算法不能工作。

我建议你注意这些参数,它们会决定任何模型的成败。如果你仍然发现这些参数很难理解,可以在评论区留言讨论。

参考资料

作为分享主义者(sharism),本人所有互联网发布的图文均遵从CC版权,转载请保留作者信息并注明作者 Harry Zhu 的 FinanceR专栏:https://segmentfault.com/blog/harryprince,如果涉及源代码请注明GitHub地址:https://github.com/harryprince。微信号: harryzhustudio
商业使用请联系作者。

上一篇 下一篇

猜你喜欢

热点阅读